Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
J Dev Orig Health Dis ; 13(2): 231-243, 2022 04.
Article in English | MEDLINE | ID: mdl-33941306

ABSTRACT

Maternal nutrition is critical in mammalian development, influencing the epigenetic reprogramming of gametes, embryos, and fetal programming. We evaluated the effects of different levels of sulfur (S) and cobalt (Co) in the maternal diet throughout the pre- and periconceptional periods on the biochemical and reproductive parameters of the donors and the DNA methylome of the progeny in Bos indicus cattle. The low-S/Co group differed from the control with respect to homocysteine, folic acid, B12, insulin growth factor 1, and glucose. The oocyte yield was lower in heifers from the low S/Co group than that in the control heifers. Embryos from the low-S/Co group exhibited 2320 differentially methylated regions (DMRs) across the genome compared with the control embryos. We also characterized candidate DMRs linked to the DNMT1 and DNMT3B genes in the blood and sperm cells of the adult progeny. A DMR located in DNMT1 that was identified in embryos remained differentially methylated in the sperm of the progeny from the low-S/Co group. Therefore, we associated changes in specific compounds in the maternal diet with DNA methylation modifications in the progeny. Our results help to elucidate the impact of maternal nutrition on epigenetic reprogramming in livestock, opening new avenues of research to study the effect of disturbed epigenetic patterns in early life on health and fertility in adulthood. Considering that cattle are physiologically similar to humans with respect to gestational length, our study may serve as a model for studies related to the developmental origin of health and disease in humans.


Subject(s)
Cobalt , Epigenome , Animals , Cattle , Cobalt/metabolism , DNA Methylation , Female , Mammals , Oocytes/metabolism , Sulfur/metabolism
2.
Planta ; 252(3): 39, 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32797317

ABSTRACT

MAIN CONCLUSION: In Brachiaria brizantha BbrizSERK1, BbrizSERK2 and BbrizSERK3 were identified. SERK expression marks somatic embryogenesis, sexual MMC, and sexual and apomictic PMC. BbrizSERK3 might have a regulatory role in reproductive development. Somatic embryogenesis receptor-like kinase (SERK) consists of plasma membrane receptor genes that have been characterized in various species, associated with several aspects of plant development, including reproduction. SERK genes are involved in anther development and in early embryo development in sexual and asexual seed formation. To comprehend the complexity of the SERK genes and their function in Brachiaria reproduction, we performed a homology-based search in a genomic database of a sexual B. brizantha and identified sequences of three SERK genes, BbrizSERK1, BbrizSERK2, and BbrizSERK3. RNASeq data showed equivalent abundance of BbrizSERK1 and BbrizSERK2 transcripts in ovaries at early megasporogenesis of sexuals and apomicts, while BbrizSERK3 transcripts were more abundant in ovaries of sexuals than in apomicts. BbrizSERK3 results in three coding sequences due to alternative splicing, among them Variant 1 results in a protein with all the predicted domains of a SERK. BbrizSERK transcripts were detected in male reproductive tissues of both sexual and apomictic plants, suggesting a role in controlling anther development. BbrizSERK transcripts were detected early in ovule development, in the integuments, and in the megaspore mother cell of the sexual plant, but not in the cells that give rise to apomictic embryo sacs, suggesting a role in female reproductive development of sexuals. This paper provides evidences that SERK genes plays a role in the onset and establishment of somatic embryogenesis and in the reproductive development of B. brizantha and suggests a distinct role of BbrizSERK in apomixis initiation.


Subject(s)
Brachiaria/growth & development , Brachiaria/genetics , Gene Expression Regulation, Plant , Plant Development/genetics , Reproduction/genetics , Seeds/growth & development , Seeds/genetics , Gene Expression Regulation, Developmental , Genes, Plant , Plant Somatic Embryogenesis Techniques
3.
PLoS One ; 15(7): e0235642, 2020.
Article in English | MEDLINE | ID: mdl-32640001

ABSTRACT

Aspergillus tamarii grows abundantly in naturally composting waste fibers of the textile industry and has a great potential in biomass decomposition. Amongst the key (hemi)cellulose-active enzymes in the secretomes of biomass-degrading fungi are the lytic polysaccharide monooxygenases (LPMOs). By catalyzing oxidative cleavage of glycoside bonds, LPMOs promote the activity of other lignocellulose-degrading enzymes. Here, we analyzed the catalytic potential of two of the seven AA9-type LPMOs that were detected in recently published transcriptome data for A. tamarii, namely AtAA9A and AtAA9B. Analysis of products generated from cellulose revealed that AtAA9A is a C4-oxidizing enzyme, whereas AtAA9B yielded a mixture of C1- and C4-oxidized products. AtAA9A was also active on cellopentaose and cellohexaose. Both enzymes also cleaved the ß-(1→4)-glucan backbone of tamarind xyloglucan, but with different cleavage patterns. AtAA9A cleaved the xyloglucan backbone only next to unsubstituted glucosyl units, whereas AtAA9B yielded product profiles indicating that it can cleave the xyloglucan backbone irrespective of substitutions. Building on these new results and on the expanding catalog of xyloglucan- and oligosaccharide-active AA9 LPMOs, we discuss possible structural properties that could underlie the observed functional differences. The results corroborate evidence that filamentous fungi have evolved AA9 LPMOs with distinct substrate specificities and regioselectivities, which likely have complementary functions during biomass degradation.


Subject(s)
Aspergillus/metabolism , Fungal Proteins/metabolism , Glucans/metabolism , Mixed Function Oxygenases/metabolism , Xylans/metabolism , Amino Acid Sequence , Binding Sites , Chromatography, High Pressure Liquid , Cloning, Molecular , Copper/chemistry , Copper/metabolism , Fungal Proteins/classification , Fungal Proteins/genetics , Glucans/analysis , Glucans/chemistry , Mixed Function Oxygenases/classification , Mixed Function Oxygenases/genetics , Oxidation-Reduction , Phylogeny , Polysaccharides , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Substrate Specificity , Xylans/chemistry
4.
PLoS One ; 10(7): e0132286, 2015.
Article in English | MEDLINE | ID: mdl-26161752

ABSTRACT

Olfaction plays a fundamental role in insect survival through resource location and intra and interspecific communications. We used RNA-Seq to analyze transcriptomes for odorant-binding proteins (OBPs) from major stink bug pest species in Brazil, Euschistus heros, Chinavia ubica, and Dichelops melacanthus, and from their egg parasitoid, Telenomus podisi. We identified 23 OBPs in E. heros, 25 OBPs in C. ubica, 9 OBPs in D. melacanthus, and 7 OBPs in T. podisi. The deduced amino acid sequences of the full-length OBPs had low intraspecific similarity, but very high similarity between two pairs of OBPs from E. heros and C. ubica (76.4 and 84.0%) and between two pairs of OBPs from the parasitoid and its preferred host E. heros (82.4 and 88.5%), confirmed by a high similarity of their predicted tertiary structures. The similar pairs of OBPs from E. heros and C. ubica may suggest that they have derived from a common ancestor, and retain the same biological function to bind a ligand perceived or produced in both species. The T. podisi OBPs similar to E. heros were not orthologous to any known hymenopteran OBPs, and may have evolved independently and converged to the host OBPs, providing a possible basis for the host location of T. podisi using E. heros semiochemical cues.


Subject(s)
Heteroptera/genetics , Ovum/parasitology , Parasites/genetics , Receptors, Odorant/metabolism , Transcriptome/genetics , Tropical Climate , Amino Acid Sequence , Animals , Computer Simulation , Gene Library , Gene Ontology , Host-Parasite Interactions/genetics , Models, Molecular , Molecular Sequence Annotation , Molecular Sequence Data , Phylogeny , Protein Structure, Tertiary , Receptors, Odorant/chemistry , Receptors, Odorant/genetics , Sequence Alignment , Sequence Analysis, RNA , Species Specificity
5.
Microb Ecol ; 64(3): 760-70, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22570118

ABSTRACT

The Brazilian Cerrado is the second largest biome in Brazil and is considered a biodiversity hotspot. In this work, we compared the bacterial communities in Cerrado soil associated with four types of native vegetation (Cerrado Denso, Cerrado sensu stricto, Campo Sujo, and Mata de Galeria) by ribosomal RNA intergenic spacer analysis, terminal fragment restriction length polymorphism and pyrosequencing. The fingerprinting results were very similar. The bacterial communities of Cerrado Denso and Cerrado sensu stricto grouped together and were distinct from those in Campo Sujo and Mata de Galeria. Pyrosequencing generated approximately 40,000 16S rRNA gene sequences per sample and allowed the identification of 17 phyla in soil samples under Cerrado vegetation. Acidobacteria were dominant in all areas studied with a relative frequency of 40-47 %, followed closely by Proteobacteria accounting for 34-40 % of the sequences. Results from all molecular techniques used suggested that the bacterial communities of Cerrado sensu stricto and Cerrado Denso are very similar to each other, while Campo Sujo forms a separate group, and Mata de Galeria is the most distinct with higher species richness. This is the first extensive study of native Cerrado soil microbiota, an important but endangered biome.


Subject(s)
Acidobacteria/genetics , Bacteria/genetics , Ecosystem , Soil Microbiology , Acidobacteria/classification , Acidobacteria/isolation & purification , Bacteria/classification , Bacteria/isolation & purification , Brazil , DNA, Bacterial/analysis , DNA, Bacterial/genetics , DNA, Ribosomal Spacer/analysis , DNA, Ribosomal Spacer/genetics , Molecular Sequence Data , Poaceae , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Proteobacteria/classification , Proteobacteria/genetics , Proteobacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Soil/analysis , Trees
6.
BMC Res Notes ; 3: 148, 2010 May 27.
Article in English | MEDLINE | ID: mdl-20507605

ABSTRACT

BACKGROUND: Banana is a nutritionally important crop across tropical and sub-tropical countries in sub-Saharan Africa, Central and South America and Asia. Although cultivars have evolved from diploid, triploid and tetraploid wild Asian species of Musa acuminata (A genome) and Musa balbisiana (B genome), many of today's commercial cultivars are sterile triploids or diploids, with fruit developing via parthenocarpy. As a result of restricted genetic variation, improvement has been limited, resulting in a crop frequently lacking resistance to pests and disease. Considering the importance of molecular tools to facilitate development of disease resistant genotypes, the objectives of this study were to develop polymorphic microsatellite markers from BAC clone sequences for M. acuminata subsp. burmannicoides, var. Calcutta 4. This wild diploid species is used as a donor cultivar in breeding programs as a source of resistance to diverse biotic stresses. FINDINGS: Microsatellite sequences were identified from five Calcutta 4 BAC consensi datasets. Specific primers were designed for 41 loci. Isolated di-nucleotide repeat motifs were the most abundant, followed by tri-nucleotides. From 33 tested loci, 20 displayed polymorphism when screened across 21 diploid M. acuminata accessions, contrasting in resistance to Sigatoka diseases. The number of alleles per SSR locus ranged from two to four, with a total of 56. Six repeat classes were identified, with di-nucleotides the most abundant. Expected heterozygosity values for polymorphic markers ranged from 0.31 to 0.75. CONCLUSIONS: This is the first report identifying polymorphic microsatellite markers from M. acuminata subsp. burmannicoides, var. Calcutta 4 across accessions contrasting in resistance to Sigatoka diseases. These BAC-derived polymorphic microsatellite markers are a useful resource for banana, applicable for genetic map development, germplasm characterization, evolutionary studies and marker assisted selection for traits.

SELECTION OF CITATIONS
SEARCH DETAIL