Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 14(1): e0211095, 2019.
Article in English | MEDLINE | ID: mdl-30653607

ABSTRACT

The eastern Brazilian Amazon contains many isolated ferruginous savanna ecosystem patches (locally known as 'canga vegetation') located on ironstone rocky outcrops on the top of plateaus and ridges, surrounded by tropical rainforests. In the Carajás Mineral Province (CMP), these outcrops contain large iron ore reserves that have been exploited by opencast mining since the 1980s. The canga vegetation is particularly impacted by mining, since the iron ores that occur are associated with this type of vegetation and currently, little is known regarding the extent of canga vegetation patches before mining activities began. This information is important for quantifying the impact of mining, in addition to helping plan conservation programmes. Here, land cover changes of the Canga area in the CMP are evaluated by estimating the pre-mining area of canga patches and comparing it to the actual extent of canga patches. We mapped canga vegetation using geographic object-based image analysis (GEOBIA) from 1973 Landsat-1 MSS, 1984 and 2001 Landsat-5 TM, and 2016 Landsat-8 OLI images, and found that canga vegetation originally occupied an area of 144.2 km2 before mining exploitation. By 2016, 19.6% of the canga area was lost in the CMP due to conversion to other land-use types (mining areas, pasturelands). In the Carajás National Forest (CNF), located within the CMP, the original canga vegetation covered 105.2 km2 (2.55% of the CNF total area), and in 2016, canga vegetation occupied an area of 77.2 km2 (1.87%). Therefore, after more than three decades of mineral exploitation, less than 20% of the total canga area was lost. Currently, 21% of the canga area in the CMP is protected by the Campos Ferruginosos National Park. By documenting the initial extent of canga vegetation in the eastern Amazon and the extent to which it has been lost due to mining operations, the results of this work are the first step towards conserving this ecosystem.


Subject(s)
Biodiversity , Forests , Grassland , Iron , Brazil , Conservation of Natural Resources , Iron/chemistry , Iron/metabolism , Mining
2.
An Acad Bras Cienc ; 90(2): 1309-1325, 2018.
Article in English | MEDLINE | ID: mdl-29791564

ABSTRACT

High-resolution satellite images, digital elevation models, bathymetric and sedimentological surveys coupled with statistical analysis were used to understand the physical environment and discuss their influence on water quality of the five upland lakes of Serra Sul dos Carajás, southeast Amazonia. The lakes have mid-altitude ranges (elevation), very small (catchment) and shallow to very shallow (central basins). Based on the length, area and volume, Violão and TI (Três Irmãs)-3 lakes may present large vertical movements of the water due to wind action and weakly stratified waters. Trophic conditions based on depth and shore development (Ld) parameters must be used with caution, since Amendoim Lake is relatively deep, but it is oligotrophic to ultra-oligotrophic. Ld values suggest that the lakes are circular to subcircular and are likely formed by solution process, as also suggested by volume development. TI-2 Lake is only presenting convex central basin and has highest dynamic ratio (DR), thus it may have high sedimentation and erosion rates. Based on the relationship between studied parameters, morphometric index and DR likely influence temperature and dissolved oxygen of waters of TI-2 Lake due to its depth profile and wind-induced surface mixing. Nevertheless, water quality parameters are controlled by catchment characteristics of the lakes.

3.
An Acad Bras Cienc ; 88(4): 2211-2227, 2016.
Article in English | MEDLINE | ID: mdl-27991958

ABSTRACT

Limnological characteristics of the Violão and Amendoim lakes, in the Serra dos Carajás, Amazon, were studied interannually (2013-2014). Climate data indicate anomalous conditions during the 2013 rainy period with higher rainfall and lower temperature in the beginning (November). Lake levels were influenced after the first and second hour of each rainfall, which showed a strong synchronization between seasonal fluctuation of lake levels and local weather patterns. Based on the water quality, both lakes are classified as classes "1" and "2" in the CONAMA (Conselho Nacional do Meio Ambiente) scheme and as "excellent" to "good" in the WQI (Water Quality Index) categories. However, the limnology is distinctly different between the lakes and seasons. Higher trophic state and phytoplankton productivity were observed mainly during the rainy period in Violão Lake compared to Amendoim Lake. This may be due to deposition of leached nutrients in the former, mainly total phosphorus (TP), which was probably derived from mafic soils and guano. This is consistent with the significant positive correlation between Chlorophyll-a and TP at the end of the rainy period (March-April), whereas this was not observed in the beginning (November). This could possibly be a consequence of the more intense cloud cover, and unusual high rainfall that limits nutrient availability.

SELECTION OF CITATIONS
SEARCH DETAIL