Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
An Acad Bras Cienc ; 95(suppl 1): e20220552, 2023.
Article in English | MEDLINE | ID: mdl-37585969

ABSTRACT

A fibrinolytic enzyme from the microalga Dunaliella tertiolecta was produced under mixotrophic conditions using different corn steep liquor (CSL) concentrations ( 0 ≤ CLS ≤ 0.75%), purified using a combination of salting out and ion-exchange chromatography, and then biochemical characterized. Cultivation of this microalga using 0.5% CSL led to the highest maximum cell concentration (1.960±0.010 mg L-1) and cell productivity (0.140g L-1 day-1), besides a high fibrinolytic activity of the extract obtained by the homogenization method (102 ±1 U mL-1). The enzyme extracted from the microalgal biomass was 5-fold purified with a 20% yield and was found to have a specific activity of 670 U mg-1. The enzyme, whose molecular weight determined by fibrin zymography was 10 kDa, was shown to be stable at pH 3.0-9.0 and up to 70°C with optimal pH and temperature values of 8.0 and 50°C, respectively. When compared to other fibrinolytic enzymes, this protease stood out for its high fibrinolytic activity, which was enhanced by Fe2+, inhibited by Zn2+, Cu2+, Mg2+, and Ca2+, and strongly inhibited by phenylmethylsulfonyl fluoride, suggesting that it belongs to the serine metalloprotease family. Moreover, thanks to its thermal stability, the enzyme may be easily preserved and activated under high-temperature conditions.


Subject(s)
Microalgae , Zea mays , Cost-Benefit Analysis , Fibrin , Hydrogen-Ion Concentration , Temperature
2.
An Acad Bras Cienc ; 94(4): e20201914, 2022.
Article in English | MEDLINE | ID: mdl-36102391

ABSTRACT

Fibrinolytic enzymes are considered promising alternative in the treatment of cardiovascular diseases by preventing fibrin clots. A protease from Mucor subtilissimus UCP 1262 was obtained by solid state fermentation and purified by ion exchange chromatography. The purified extract was administered at an acute dose of 2000 mg/mL to evaluate its toxic effects to the lungs of mice. After 14 days of treatment, a histomorphometric study was performed by the type 1 and 2 pneumocyte count and the evaluation of the lung area. As result, the experimental group showed a significant decrease of type 2 pneumocyte and although a decrease in the alveolar area was observed in relation to the control group, no significant pulmonary toxicity, emphysema, and fibrosis characteristics were detected. The in vitro tests suggest possible clinical applications for the enzyme.


Subject(s)
Lung , Peptide Hydrolases , Animals , Mice , Peptide Hydrolases/chemistry
3.
An Acad Bras Cienc ; 94(4): e20201438, 2022.
Article in English | MEDLINE | ID: mdl-35830020

ABSTRACT

This work aimed to compare the production of collagenolytic proteases produced by M. subtilissimus UCP1262 in submerged fermentation (SF) and solid-state fermentation (SSF) as well as extracting in aqueous two-phase system (ATPS). Collagenolytic protease production was performed in using MS-2 culture medium (SF) and soybean bran as substrate (SSF). Subsequently, the fermented liquid from both fermentations were used for the extraction of enzyme by ATPS, it was verified the influence of different variables from a factorial design 23. In SSF the highest protease and collagenolytic activities were achieved with 362.66 U/mL and 179.81 U/mL, respectively. When compared with SF (26.33 and 18.70 U/mL) higher values were obtained in the activities. The protease partitioning from SF and SSF in ATPS showed a similar profile showing higher affinity for the polymer rich phase. The highest value for the response variable purification factor (3.49) was obtained in the system using SSF. Thus, SSF shows promise as a bioprocess for extracellular production of collagenolytic proteases, using of soybean bran as substrate had used sustainable raw material, aiming application this possible enzyme in the treatment of burns and postoperative scarring.


Subject(s)
Mucor , Peptide Hydrolases , Fermentation , Glycine max , Temperature
4.
An Acad Bras Cienc ; 93(suppl 4): e20210335, 2021.
Article in English | MEDLINE | ID: mdl-34909841

ABSTRACT

Fibrinolytic proteases are a promising alternative in the pharmaceutical industry, they are used in the treatment of cardiovascular diseases, especially thrombosis. Microorganisms are the most interesting source of fibrinolytic proteases. The aim of this study was the production of fibrinolytic protease from Streptomyces parvulus DPUA 1573, the recovery of the protease by aqueous two-phase system and partial biochemical characterization of the enzyme. The aqueous two-phase system was performed according to a 24-full factorial design using polyethylene glycol molar mass, polyethylene glycol concentration, citrate concentration and pH as independent variables. It was analyzed the effect of different ions, surfactants, inhibitors, pH and temperature on enzyme activity. The best conditions for purifying the enzyme were 17.5% polyethylene glycol 8,000, 15% Phosphate and pH 8.0, it was obtained a partition coefficient of 7.33, a yield of 57.49% and a purification factor of 2.10-fold. There was an increase in enzyme activity in the presence of Fe2+ and a decrease in the presence of $\beta$-Mercaptoethanol, phenylmethylsulfonyl fluoride and Iodoacetic acid. The optimum pH was 7.0 and the optimum temperature was 40 ºC. The purified protease exhibited a molecular mass of 41 kDa. The fibrinolytic protease from Streptomyces parvulus proved to be a viable option for the development of a possible drug with fibrinolytic action.


Subject(s)
Peptide Hydrolases , Streptomyces , Hydrogen-Ion Concentration , Phosphates , Polyethylene Glycols , Temperature
5.
Int J Biol Macromol ; 104(Pt A): 125-136, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28591589

ABSTRACT

Blood coagulation and platelet-dependent primary homeostasis are important defense mechanisms against bleeding and novel inhibitors have been researched to obtain pharmacological and clinical applications. In this work, the PpyLL, a lectin obtained from Phthirusa pyrifolia, was characterized in terms of its molecular structure and biological functions (anticoagulant, antiplatelet agreggation and hemagglutinating activities) in presence or absence of Gamma radiation exposure. Results revealed a lectin with secondary-structure content by approximately 49% of ß-sheet, 20% of ß-turn and 31% of disordered structure. Irradiation effect demonstrated possible different sites of function by lectin on anticoagulant and hemagglutinating activities, once a decrease about 80% was observed when compared the activities under 0.5kGy of exposition to gamma radiation. An emphatic discussion about the use of gamma radiation as a possible modulator of the lectin activity was made, and once the ionizing radiation affected differently the anticoagulation and hemagglutinating activities, we speculated that the results are determined by selective molecular damages in different binding sites. PpyLL biological activities and gamma radiation modulation could be considered for future researches in biomedical field aiming possible medical applications.


Subject(s)
Anticoagulants/pharmacology , Gamma Rays , Hemagglutination/drug effects , Loranthaceae/chemistry , Plant Lectins/pharmacology , Amino Acid Sequence , Anticoagulants/chemistry , Humans , Male , Plant Lectins/chemistry , Platelet Aggregation/drug effects
6.
Appl Biochem Biotechnol ; 183(3): 765-777, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28349375

ABSTRACT

In this work, chitosan-based films containing gelatin and chondroitin-4-sulfate (C4S) with and without ZnO particles were produced and tested in vitro to investigate their potential wound healing properties. Chitosans were produced from shrimp-head processing waste by alkaline deacetylation of chitin to obtain chitosans differing in molecular weight and degree of deacetylation (80 ± 0.5%). The film-forming solutions (chitosan, C4S and gelatin) and ZnO suspension showed no toxicity towards fibroblasts or keratinocytes. Chitosan was able to agglutinate red blood cells, and film-forming solutions induced no hemolysis. Film components were released into solution when incubated in PBS as demonstrated by protein and sugar determination. These data suggest that a stable, chitosan-based film with low toxicity and an ability to release components would be able to establish a biocompatible microenvironment for cell growth. Chitosan-based films significantly increased the percentage of wound healing (wound contraction from 65 to 86%) in skin with full-thickness excision when compared with control (51%), after 6 days. Moreover, histological analysis showed increased granulation tissue in chitosan and chitosan/gelatin/C4S/ZnO films. Chitosan-based biopolymer composites could be used for improved biomedical applications such as wound dressings, giving them enhanced properties.


Subject(s)
Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Chitosan/chemistry , Chondroitin Sulfates/chemistry , Gelatin/chemistry , Wound Healing/drug effects , Zinc Oxide/chemistry , 3T3 Cells , Animals , Fibroblasts/cytology , Fibroblasts/drug effects , Humans , Male , Mice , Rats , Rats, Wistar , Staphylococcus aureus/drug effects , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...