Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 453
Filter
1.
Geroscience ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954129

ABSTRACT

Canine mammary tumors (CMTs) represent a significant health concern in dogs, with a high incidence among intact female dogs. CMTs are a promising comparative model for human breast cancer, due to sharing several pathophysiological features. Additionally, CMTs have a strong genetic correlation with their human counterpart, including the expression of microRNAs (miRNAs). MiRNAs are a class of non-coding RNAs that play important roles in post-translational regulation of gene expression, being implicated in carcinogenesis, tumor progression, and metastasis. Moreover, miRNAs hold promise as diagnostic, prognostic, and metastatic biomarkers. Understanding the molecular mechanisms underlying CMTs is crucial for improving diagnosis, prognosis, and monitoring of treatments. Herein, we provide a comprehensive overview of the current knowledge on miRNAs in CMTs, highlighting their roles in carcinogenesis and their potential as biomarkers. Additionally, we highlight the current limitations and critically discuss the overarching challenges in this field, emphasizing the need for future research to translate miRNA findings into veterinary clinical practice.

2.
J Colloid Interface Sci ; 674: 500-512, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38943911

ABSTRACT

Targeted breast cancer therapies hold the potential to improve the efficiency of drug delivery to the pathology site without impacting the viability and function of healthy cells. Herein, we developed multifunctional nanocarriers that target simultaneously several downstream signaling processes in triple negative breast cancer cells. The system comprises pH sensitive CaCO3 nanoparticles (NPs) as carriers of the anticancer drug doxorubicin (DOX). The NPs were coated in a layer-by-layer (LbL) fashion using poly-l-lysine and hyaluronic acid to target receptors overexpressed in breast cancer (e.g. CD44, RHAMM). Spheroids of the triple-negative Hs578T cell line were used as a 3D model to assess the therapeutic potential of this system. Our results showed that the NPs act via a synergistic mechanism that combines Ca2+ overload causing cell calcification and DNA damage by DOX. The LbL coating was crucial for the protection of the healthy cells, i.e. it provides NPs with targeting capacity. The overall data suggests that the LbL-coated NPs loaded with DOX hold great potential for the treatment of breast cancer.

3.
ACS Appl Eng Mater ; 2(4): 1170-1189, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38693992

ABSTRACT

The expansion of the Internet of Things market and the proliferation of wearable technologies have generated a significant demand for textile-based energy storage systems. This work reports the engineered design of hybrid electrode nanomaterials of N-doped carbon nanotubes (CNT-N) functionalized with two types of manganese oxides (MOs)-birnessite (MnO2) and hausmannite (Mn3O4)-and their application in solid-state textile-based hybrid supercapacitors (SCs). A versatile citric acid-mediated eco-friendly one-pot aqueous precipitation process is proposed for the fabrication of the hybrids. Remarkably, different types of MOs were obtained by simply changing the reaction temperature from room temperature to 100 °C, without any post-thermal treatment. Asymmetric textile SCs were developed using cotton fabrics coated with CNT-N and the hybrids as textile electrodes, and poly(vinyl) alcohol/orthophosphoric acid as the solid-gel electrolyte. The asymmetric devices presented enhanced energy storage performance relative to the symmetric device based on CNT-N and excellent cycling stability (>96%) after 8000 charge/discharge cycles owing to synergistic effects between CNT-N and the MOs, which endowed nonfaradaic and pseudocapacitive features to the SCs. The asymmetric SC based on CNT-N@MnO2 featured 47% higher energy density and comparable power density to the symmetric CNT-N-based device (8.70 W h cm-2 at 309.01 µW cm-2 vs. 5.93 W h cm-2 at 346.58 µW cm-2). The engineered hybrid CNT-N@MO nanomaterials and the eco-friendly citric acid-assisted one-pot precipitation route open promising prospects not only for energy storage, but also for (photo)(electro)catalysis, wastewater treatment, and (bio)sensing.

4.
Antioxidants (Basel) ; 13(5)2024 May 10.
Article in English | MEDLINE | ID: mdl-38790693

ABSTRACT

Lemon is a fruit rich in antioxidant properties and has several health benefits, namely the reduction of skin edema and anticarcinogenic properties, which are due to its high content of bioactive compounds. Melatonin can improve and preserve the properties of lemon for longer and also has health benefits. The aim of this study was to evaluate the effects of oral administration of lemon juice after melatonin treatment on murinometric parameters of wild-type (WT) mice and transgenic mice carrying human papillomavirus (HPV). Two trials were performed for oral administration of the lemon extract compound: in drinking water and in diet. First of all, lemons were treated by immersion with melatonin at 10 mM. Then, lemons were squeezed, and the juice obtained was freeze-dried and stored to be subsequently added to drinking water or diet, according to the assay. Thus, mice were divided into eight groups in the drink assay (each with n = 5): group 1 (G1, WT, control), group 2 (G2, WT, 1 mL lemon), group 3 (G3, WT, 1.5 mL lemon), group 4 (G4, WT, 2 mL lemon), group 5 (G5, HPV16, control), group 6 (G6, HPV16, 1 mL lemon) group 7 (G6, HPV16, 1.5 mL lemon) and group 8 (G6, HPV16, 2 mL lemon). The diet assay was divided into four groups: group 1 (G1, WT, control), group 2 (G2, WT, 4 mL lemon), group 3 (G3, HPV16, control) and group 4 (G4, HPV16, 4 mL lemon). In the drink assay, the highest concentration of melatonin (308 ng/100 mL) was for groups 4 and 8, while in the food assay, there was only one concentration of melatonin (9.96 ng/g) for groups 2 and 4. Both trials lasted 30 days. During this time, body weight, food and water were recorded. Afterward, they were sacrificed, and samples were collected for different analyses. At the concentrations used, the lemon juice with melatonin had no adverse effects on the animals' health and showed a positive outcome in modifying weight gain and enhancing antioxidant activity in mice. Moreover, a reduction in the incidence of histological lesions was observed in treated animals. Further research is needed to better understand the effects of lemon extract on health and treatment outcomes in this animal model.

5.
Environ Res ; 257: 119274, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38821456

ABSTRACT

Bracken fern (Pteridium spp.) is a highly problematic plant worldwide due to its toxicity in combination with invasive properties on former farmland, in deforested areas and on disturbed natural habitats. The carcinogenic potential of bracken ferns has caused scientific and public concern for six decades. Its genotoxic effects are linked to illudane-type glycosides (ITGs), their aglycons and derivatives. Ptaquiloside is considered the dominating ITG, but with significant contributions from other ITGs. The present review aims to compile evidence regarding environmental pollution by bracken fern ITGs, in the context of their human and animal health implications. The ITG content in bracken fern exhibits substantial spatial, temporal, and chemotaxonomic variation. Consumption of bracken fern as food is linked to human gastric cancer but also causes urinary bladder cancers in bovines browsing on bracken. Genotoxic metabolites are found in milk and meat from bracken fed animals. ITG exposure may also take place via contaminated water with recent data pointing to concentrations at microgram/L-level following rain events. Airborne ITG-exposure from spores and dust has also been documented. ITGs may synergize with major biological and environmental carcinogens like papillomaviruses and Helicobacter pylori to induce cancer, revealing novel instances of chemical and biological co-carcinogenesis. Thus, the emerging landscape from six decades of bracken research points towards a global environmental problem with increasingly complex health implications.

6.
Curr Issues Mol Biol ; 46(5): 3763-3793, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38785503

ABSTRACT

This study explores a nanoemulsion formulated with açaí seed oil, known for its rich fatty acid composition and diverse biological activities. This study aimed to characterise a nanoemulsion formulated with açaí seed oil and explore its cytotoxic effects on HeLa and SiHa cervical cancer cell lines, alongside assessing its antioxidant and toxicity properties both in vitro and in vivo. Extracted from fruits sourced in Brazil, the oil underwent thorough chemical characterization using gas chromatography-mass spectrometry. The resulting nanoemulsion was prepared and evaluated for stability, particle size, and antioxidant properties. The nanoemulsion exhibited translucency, fluidity, and stability post centrifugation and temperature tests, with a droplet size of 238.37, PDI -9.59, pH 7, and turbidity 0.267. In vitro assessments on cervical cancer cell lines revealed antitumour effects, including inhibition of cell proliferation, migration, and colony formation. Toxicity tests conducted in cell cultures and female Swiss mice demonstrated no adverse effects of both açaí seed oil and nanoemulsion. Overall, açaí seed oil, particularly when formulated into a nanoemulsion, presents potential for cancer treatment due to its bioactive properties and safety profile.

7.
Cell Rep ; 43(4): 114080, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38581677

ABSTRACT

Midbrain dopamine neurons are thought to play key roles in learning by conveying the difference between expected and actual outcomes. Recent evidence suggests diversity in dopamine signaling, yet it remains poorly understood how heterogeneous signals might be organized to facilitate the role of downstream circuits mediating distinct aspects of behavior. Here, we investigated the organizational logic of dopaminergic signaling by recording and labeling individual midbrain dopamine neurons during associative behavior. Our findings show that reward information and behavioral parameters are not only heterogeneously encoded but also differentially distributed across populations of dopamine neurons. Retrograde tracing and fiber photometry suggest that populations of dopamine neurons projecting to different striatal regions convey distinct signals. These data, supported by computational modeling, indicate that such distributional coding can maximize dynamic range and tailor dopamine signals to facilitate specialized roles of different striatal regions.


Subject(s)
Dopaminergic Neurons , Mesencephalon , Dopaminergic Neurons/physiology , Dopaminergic Neurons/metabolism , Animals , Mesencephalon/physiology , Mesencephalon/cytology , Male , Mice , Reward , Dopamine/metabolism , Association Learning/physiology , Mice, Inbred C57BL
8.
Cell Rep ; 43(4): 113993, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38551963

ABSTRACT

Corticospinal neurons (CSNs) synapse directly on spinal neurons, a diverse assortment of cells with unique structural and functional properties necessary for body movements. CSNs modulating forelimb behavior fractionate into caudal forelimb area (CFA) and rostral forelimb area (RFA) motor cortical populations. Despite their prominence, the full diversity of spinal neurons targeted by CFA and RFA CSNs is uncharted. Here, we use anatomical and RNA sequencing methods to show that CSNs synapse onto a remarkably selective group of spinal cell types, favoring inhibitory populations that regulate motoneuron activity and gate sensory feedback. CFA and RFA CSNs target similar spinal neuron types, with notable exceptions that suggest that these populations differ in how they influence behavior. Finally, axon collaterals of CFA and RFA CSNs target similar brain regions yet receive highly divergent inputs. These results detail the rules of CSN connectivity throughout the brain and spinal cord for two regions critical for forelimb behavior.


Subject(s)
Forelimb , Pyramidal Tracts , Animals , Forelimb/physiology , Pyramidal Tracts/physiology , Spinal Cord/physiology , Spinal Cord/cytology , Mice , Motor Cortex/physiology , Neurons/physiology , Motor Neurons/physiology , Female , Male , Axons/physiology , Synapses/physiology
9.
Cell Rep ; 43(4): 113958, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38520691

ABSTRACT

The brain can generate actions, such as reaching to a target, using different movement strategies. We investigate how such strategies are learned in a task where perched head-fixed mice learn to reach to an invisible target area from a set start position using a joystick. This can be achieved by learning to move in a specific direction or to a specific endpoint location. As mice learn to reach the target, they refine their variable joystick trajectories into controlled reaches, which depend on the sensorimotor cortex. We show that individual mice learned strategies biased to either direction- or endpoint-based movements. This endpoint/direction bias correlates with spatial directional variability with which the workspace was explored during training. Model-free reinforcement learning agents can generate both strategies with similar correlation between variability during training and learning bias. These results provide evidence that reinforcement of individual exploratory behavior during training biases the reaching strategies that mice learn.


Subject(s)
Forelimb , Animals , Forelimb/physiology , Mice , Exploratory Behavior/physiology , Mice, Inbred C57BL , Learning/physiology , Male , Movement , Reinforcement, Psychology , Female , Behavior, Animal
10.
Antioxidants (Basel) ; 13(3)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38539858

ABSTRACT

The historical use of plants as sources of natural compounds has persisted over time. Increasing the intake of bioactive substances shows significant potential for promoting overall well-being and health. This study delves into the pigments, phenolic composition, and profile, along with antioxidant properties, of leaf extracts rich in bioactives from plants in the Azores region, contributing to sustainable primary food production. Analyses encompassed chlorophylls, carotenoids, total phenols, ortho-diphenols, and flavonoids, as well as antioxidant capacity assessment, polyphenolic profiling, and quantification. Psidium guajava L. and Smallanthus sonchifolius (Poepp.) H.Rob. exhibited elevated chlorophyll content, while Colocasia esculenta (L.) Schott displayed the highest carotenoid levels. Annona cherimola Mill., Eriobotrya japonica (Thunb.) Lindl, and Psidium guajava L. demonstrated pronounced total phenols, ortho-diphenols, and flavonoids. These findings align with heightened antioxidant capacity. HPLC-DAD (high-performance liquid chromatography with diode-array detection) characterization unveiled elevated hydroxycinnamic acids in E. japonica and Ipomea batatas (L.) Lam. compared to A. cherimola Mill., while C. esculenta exhibited increased flavone content. Among the quantified compounds, flavonols were the ones that predominantly demonstrated contribution to the antioxidant capacity of these leaves. This research highlights Azorean leaf plants' antioxidant potential, fostering natural product development for better health.

11.
Odontology ; 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38514512

ABSTRACT

To evaluate the impact on the quality of filling with of low-fusion and conventional gutta-percha cones. Thirty-six maxillary canines were prepared and divided into three groups: I-conventional cone with Downpack at 200 °C at 4 mm from the WL; II-low-fusion cone with Downpack at 100 °C up to 4 mm from the WL; III-low-fusion cone with Downpack at 100 °C up to 7 mm from the WL. Temperature variations were measured in thirds on the external surface of the root. The bond strength was evaluated using the push-out test. The adhesive interface was analyzed by scanning electron microscopy. The bond strength and the temperature variation data were analyzed using analysis of variance and the failure type using the chi-square test. The low-fusion cone group with 7 mm Downpack showed higher bond strength (4.2 ± 2.7) compared with conventional cones (2.8 ± 1.6) and low-fusion cones with 4 mm Downpack (2.9 ± 1.6) (p < 0.05), with occurrence of a higher number of adhesive failures to the filling material and mixed failures. Relative to temperature variation, there was less temperature change in the apical third, in the low-fusion cone with Downpack 7 mm (1.0 ± 1.0) (p < 0.05). The use of low-fusion cones allowed the continuous wave condensation technique to be performed at a lower depth of Downpack at 100 °C at 7 mm, with less heating in the apical third, without compromising the quality of filling. Using gutta-percha cones with low fusion, which permits a lower condensation temperature and reduced Downpack depth, maintains the quality of filling, in order to minimize possible damage to the periapical tissues.

12.
Clin Oral Investig ; 28(3): 201, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38453706

ABSTRACT

OBJECTIVES: The aim of this study was to assess cone beam computed tomography (CBCT) as a root canal anatomy diagnostic tool by comparison with micro-CT gold-standard. MATERIALS AND METHODS: 216 two-rooted mandibular molars were first scanned in a CBCT device (200 µm voxel size) and posteriorly in a micro-CT scanner (19.61 µm). The volumes were sequentially screened to classify main root canal anatomy according to Vertucci classification, and for the presence of lateral canals and apical deltas, in both mesial and distal roots. RESULTS: Both methods revealed a higher prevalence of Vertucci Type II and IV in the mesial root, and Vertucci Type I in the distal root. The percentage of agreement for main root canal anatomy classification between CBCT and micro-CT scores was high (85.2%). CONCLUSION: Sensibility to detect both lateral canals and apical deltas with CBCT was low. These results attest to the fact that minor anatomical changes might be difficult to identify with CBCT imaging, hampering its diagnostic value.


Subject(s)
Dental Pulp Cavity , Mandible , Dental Pulp Cavity/diagnostic imaging , Dental Pulp Cavity/anatomy & histology , X-Ray Microtomography , Mandible/diagnostic imaging , Cone-Beam Computed Tomography/methods , Tooth Root/diagnostic imaging , Tooth Root/anatomy & histology
13.
Curr Biol ; 34(5): 1034-1047.e4, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38377999

ABSTRACT

Dopaminergic neurons (DANs) in the substantia nigra pars compacta (SNc) have been related to movement speed, and loss of these neurons leads to bradykinesia in Parkinson's disease (PD). However, other aspects of movement vigor are also affected in PD; for example, movement sequences are typically shorter. However, the relationship between the activity of DANs and the length of movement sequences is unknown. We imaged activity of SNc DANs in mice trained in a freely moving operant task, which relies on individual forelimb sequences. We uncovered a similar proportion of SNc DANs increasing their activity before either ipsilateral or contralateral sequences. However, the magnitude of this activity was higher for contralateral actions and was related to contralateral but not ipsilateral sequence length. In contrast, the activity of reward-modulated DANs, largely distinct from those modulated by movement, was not lateralized. Finally, unilateral dopamine depletion impaired contralateral, but not ipsilateral, sequence length. These results indicate that movement-initiation DANs encode more than a general motivation signal and invigorate aspects of contralateral movements.


Subject(s)
Dopaminergic Neurons , Parkinson Disease , Mice , Animals , Dopaminergic Neurons/physiology , Substantia Nigra/physiology , Movement/physiology , Pars Compacta
14.
Nature ; 626(7999): 583-592, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38092040

ABSTRACT

Animals exhibit a diverse behavioural repertoire when exploring new environments and can learn which actions or action sequences produce positive outcomes. Dopamine release after encountering a reward is critical for reinforcing reward-producing actions1-3. However, it has been challenging to understand how credit is assigned to the exact action that produced the dopamine release during continuous behaviour. Here we investigated this problem in mice using a self-stimulation paradigm in which specific spontaneous movements triggered optogenetic stimulation of dopaminergic neurons. Dopamine self-stimulation rapidly and dynamically changes the structure of the entire behavioural repertoire. Initial stimulations reinforced not only the stimulation-producing target action, but also actions similar to the target action and actions that occurred a few seconds before stimulation. Repeated pairings led to a gradual refinement of the behavioural repertoire to home in on the target action. Reinforcement of action sequences revealed further temporal dependencies of refinement. Action pairs spontaneously separated by long time intervals promoted a stepwise credit assignment, with early refinement of actions most proximal to stimulation and subsequent refinement of more distal actions. Thus, a retrospective reinforcement mechanism promotes not only reinforcement, but also gradual refinement of the entire behavioural repertoire to assign credit to specific actions and action sequences that lead to dopamine release.


Subject(s)
Dopamine , Learning , Reinforcement, Psychology , Reward , Animals , Mice , Decision Making/physiology , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Learning/physiology , Optogenetics , Time Factors , Models, Psychological , Models, Neurological
16.
Elife ; 122023 Dec 19.
Article in English | MEDLINE | ID: mdl-38113081

ABSTRACT

Neurons coordinate their activity to produce an astonishing variety of motor behaviors. Our present understanding of motor control has grown rapidly thanks to new methods for recording and analyzing populations of many individual neurons over time. In contrast, current methods for recording the nervous system's actual motor output - the activation of muscle fibers by motor neurons - typically cannot detect the individual electrical events produced by muscle fibers during natural behaviors and scale poorly across species and muscle groups. Here we present a novel class of electrode devices ('Myomatrix arrays') that record muscle activity at unprecedented resolution across muscles and behaviors. High-density, flexible electrode arrays allow for stable recordings from the muscle fibers activated by a single motor neuron, called a 'motor unit,' during natural behaviors in many species, including mice, rats, primates, songbirds, frogs, and insects. This technology therefore allows the nervous system's motor output to be monitored in unprecedented detail during complex behaviors across species and muscle morphologies. We anticipate that this technology will allow rapid advances in understanding the neural control of behavior and identifying pathologies of the motor system.


Subject(s)
Motor Neurons , Primates , Rats , Mice , Animals , Motor Neurons/physiology , Electrodes , Muscle Fibers, Skeletal
17.
Diagnostics (Basel) ; 13(21)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37958253

ABSTRACT

Klotho proteins, αKlotho, ßKlotho, and γKlotho, exert tumor-suppressive activities via the fibroblast growth factor receptors and multiple cell-signaling pathways. There is a growing interest in Klotho proteins as potential diagnostic and prognostic biomarkers for multiple diseases. However, recent advances regarding their roles and potential applications in cancer remain disperse and require an integrated analysis. The present review analyzed research articles published between 2012 and 2022 in the Cochrane and Scopus scientific databases to study the role of Klotho in cancer and their potential as tools for diagnosing specific cancer types, predicting tumor aggressiveness and prognosis. Twenty-six articles were selected, dealing with acute myeloid leukemia and with bladder, breast, colorectal, esophageal, gastric, hepatocellular, ovarian, pancreatic, prostatic, pulmonary, renal, and thyroid cancers. αKlotho was consistently associated with improved prognosis and may be useful in estimating patient survival. A single study reported the use of soluble αKlotho levels in blood serum as a tool to aid the diagnosis of esophageal cancer. γKlotho was associated with increased aggressiveness of bladder, breast, and prostate cancer, and ßKlotho showed mixed results. Further clinical development of Klotho-based assays will require careful identification of specific tumor subtypes where Klotho proteins may be most valuable as diagnostic or prognostic tools.

18.
Biomarkers ; 28(7): 617-627, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37942654

ABSTRACT

INTRODUCTION: High-risk human papillomavirus (HPV) is the aetiological agent of cervical cancer, which remains the fourth leading cause of cancer death in women worldwide. K14-HPV16 transgenic mice are a model for HPV-induced cancers, which undergo multistep squamous carcinogenesis at the skin, that is histologically and molecularly similar to carcinogenesis of the human cervix. Previous screens of differentially regulated microRNAs (miRs) using K14-HPV16 mice showed a role for miR-21, miR-155, miR-150, miR-146a, miR-125b and miR-223 during carcinogenesis. METHODS: We now aim to translate these observations into the clinical setting, using data provided by The Cancer Genome Atlas (TCGA) to explore whether those microRNAs can influence the survival of cervical cancer patients. RESULTS: Results showed that low miR-150, miR-155 and miR-146a expression levels in primary tumours were associated with poor overall survival. However, only miR-150 and miR-155 were found to be independent predictors, increasing the risk of death. When patients were stratified by clinical stage, low miR-150, miR-155, miR-146a and miR-125b were associated with poor survival for clinical stages I and II. Only low miR-150 expression increased the death risk. CONCLUSION: We conclude that miR-150 and miR-155 may be potentially applied as prognostic biomarkers in cervical cancer patients. However, further investigation is required to determine their applicability.


Subject(s)
MicroRNAs , Papillomavirus Infections , Uterine Cervical Neoplasms , Animals , Female , Humans , Mice , Biomarkers, Tumor/genetics , Carcinogenesis/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Papillomavirus Infections/genetics , Papillomavirus Infections/pathology , Prognosis , Uterine Cervical Neoplasms/genetics
19.
bioRxiv ; 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38014164

ABSTRACT

Corticospinal neurons (CSNs) synapse directly on spinal neurons, a diverse group of neurons with unique structural and functional properties necessary for body movements. CSNs modulating forelimb behavior fractionate into caudal forelimb area (CFA) and rostral forelimb area (RFA) motor cortical populations. Despite their prominence, no studies have mapped the diversity of spinal cell types targeted by CSNs, let alone compare CFA and RFA populations. Here we use anatomical and RNA-sequencing methods to show that CSNs synapse onto a remarkably selective group of spinal cell types, favoring inhibitory populations that regulate motoneuron activity and gate sensory feedback. CFA and RFA CSNs target similar spinal cell types, with notable exceptions that suggest these populations differ in how they influence behavior. Finally, axon collaterals of CFA and RFA CSNs target similar brain regions yet receive surprisingly divergent inputs. These results detail the rules of CSN connectivity throughout the brain and spinal cord for two regions critical for forelimb behavior.

SELECTION OF CITATIONS
SEARCH DETAIL
...