Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Proc Biol Sci ; 281(1778): 20133070, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24452030

ABSTRACT

The mechanisms regulating sexual behaviours in female vertebrates are still poorly understood, mainly because in most species sexual displays in females are more subtle and less frequent than displays in males. In a sex-role reversed population of a teleost fish, the peacock blenny Salaria pavo, an external fertilizer, females are the courting sex and their sexual displays are conspicuous and unambiguous. We took advantage of this to investigate the role of ovarian-synthesized hormones in the induction of sexual displays in females. In particular, the effects of the sex steroids oestradiol (E2) and testosterone (T) and of the prostaglandin F2α (PGF2α) were tested. Females were ovariectomized and their sexual behaviour tested 7 days (sex steroids and PGF2α) and 14 days (sex steroids) after ovariectomy by presenting females to an established nesting male. Ovariectomy reduced the expression of sexual behaviours, although a significant proportion of females still courted the male 14 days after the ovary removal. Administration of PGF2α to ovariectomized females recovered the frequency of approaches to the male's nest and of courtship displays towards the nesting male. However, E2 also had a positive effect on sexual behaviour, particularly on the frequency of approaches to the male's nest. T administration failed to recover sexual behaviours in ovariectomized females. These results suggest that the increase in E2 levels postulated to occur during the breeding season facilitates female mate-searching and assessment behaviours, whereas PGF2α acts as a short-latency endogenous signal informing the brain that oocytes are mature and ready to be spawned. In the light of these results, the classical view for female fishes, that sex steroids maintain sexual behaviour in internal fertilizers and that prostaglandins activate spawning behaviours in external fertilizers, needs to be reviewed.


Subject(s)
Dinoprost/physiology , Estradiol/physiology , Fishes/physiology , Mating Preference, Animal , Testosterone/physiology , Animals , Dinoprost/blood , Dinoprost/pharmacology , Estradiol/blood , Estradiol/pharmacology , Female , Fishes/metabolism , Male , Sex Characteristics , Sexual Behavior, Animal , Testosterone/blood , Testosterone/pharmacology
2.
Mol Plant ; 1(4): 686-702, 2008 Jul.
Article in English | MEDLINE | ID: mdl-19825573

ABSTRACT

Pollen tubes elongate within the pistil to transport sperm cells to the embryo sac for fertilization. Growth occurs exclusively at the tube apex, rendering pollen tube elongation a most dramatic polar cell growth process. A hallmark pollen tube feature is its cytoskeleton, which comprises elaborately organized and dynamic actin microfilaments and microtubules. Pollen tube growth is dependent on the actin cytoskeleton; its organization and regulation have been examined extensively by various approaches, including fluorescent protein labeled actin-binding proteins in live cell studies. Using the previously described GFP-NtADF1 and GFP-LlADF1, and a new actin reporter protein NtPLIM2b-GFP, we re-affirm that the predominant actin structures in elongating tobacco and lily pollen tubes are long, streaming actin cables along the pollen tube shank, and a subapical structure comprising shorter actin cables. The subapical collection of actin microfilaments undergoes dynamic changes, giving rise to the appearance of structures that range from basket- or funnel-shaped, mesh-like to a subtle ring. NtPLIM2b-GFP is used in combination with a guanine nucleotide exchange factor for the Rho GTPases, AtROP-GEF1, to illustrate the use of these actin reporter proteins to explore the linkage between the polar cell growth process and its actin cytoskeleton. Contrary to the actin cytoskeleton, microtubules appear not to play a direct role in supporting the polar cell growth process in angiosperm pollen tubes. Using a microtubule reporter protein based on the microtubule end-binding protein from Arabidopsis AtEB1, GFP-AtEB1, we show that the extensive microtubule network in elongating pollen tubes displays varying degrees of dynamics. These reporter proteins provide versatile tools to explore the functional connection between major structural and signaling components of the polar pollen tube growth process.


Subject(s)
Actins/metabolism , Cytological Techniques/methods , Genes, Reporter , Microtubules/metabolism , Pollen Tube/cytology , Pollen Tube/metabolism , Arabidopsis/metabolism , Cell Survival , Green Fluorescent Proteins/metabolism , Plant Proteins/metabolism , Protein Binding , Nicotiana/cytology , Nicotiana/metabolism , Transformation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL