Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Epidemiol Infect ; 152: e50, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38497495

ABSTRACT

Most countries in Africa deployed digital solutions to monitor progress in rolling out COVID-19 vaccines. A rapid assessment of existing data systems for COVID-19 vaccines in the African region was conducted between May and July 2022, in 23 countries. Data were collected through interviews with key informants, identified among senior staff within Ministries of Health, using a semi-structured electronic questionnaire. At vaccination sites, individual data were collected in paper-based registers in five countries (21.7%), in an electronic registry in two countries (8.7%), and in the remaining 16 countries (69.6%) using a combination of paper-based and electronic registries. Of the 18 countries using client-based digital registries, 11 (61%) deployed the District Health Information System 2 Tracker, and seven (39%), a locally developed platform. The mean percentage of individual data transcribed in the electronic registries was 61% ± 36% standard deviation. Unreliable Internet coverage (100% of countries), non-payment of data clerks' incentives (89%), and lack of electronic devices (89%) were the main reasons for the suboptimal functioning of digital systems quoted by key informants. It is critical for investments made and experience acquired in deploying electronic platforms for COVID-19 vaccines to be leveraged to strengthen routine immunization data management.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Data Systems , COVID-19/epidemiology , COVID-19/prevention & control , Immunization Programs , Vaccination , Surveys and Questionnaires , World Health Organization
2.
Glob Health Sci Pract ; 8(4): 759-770, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33361240

ABSTRACT

Effective and efficient health supply chains play a vital role in achieving health outcomes by ensuring supplies are available for people to access quality health services. However, supplying health commodities to service delivery points is complex and costly in many low- and middle-income countries. Thus, governments and partner organizations are often interested in understanding how to design their health supply chains more cost efficiently.Several modeling tools exist in the public and private market that can help assess supply chain efficiency and identify supply chain design improvements. These tools are generally capable of providing users with very precise cost estimates, but they often use proprietary software and require detailed data inputs. This can result in a somewhat lengthy and expensive analysis process, which may be prohibitive for many decision makers, especially in the early stages of a supply chain design process. For many use cases, such as advocacy, informing workshop and technical meetings, and narrowing down initial design options, decision makers may often be willing to trade some detail and accuracy in exchange for quicker and lower-cost analysis results. To our knowledge, there are no publicly available tools focused on generating quick, high-level estimates of the cost and efficiency of different supply chain designs.To address this gap, we designed and tested an Excel-based Rapid Supply Chain Modeling (RSCM) Tool. Our assessment indicated that, despite requiring significantly less data, the RSCM Tool can generate cost estimates that are similar to other common analysis and modeling methods. Furthermore, to better understand how the RSCM Tool aligns with real-world processes and decision-making timelines, we used it to inform an ongoing immunization supply chain redesign in Angola. For the use cases described above we believe that the RSCM Tool addresses an important need for quicker and less expensive ways to identify more cost-efficient supply chain designs.


Subject(s)
Public Health , Vaccination , Angola , Costs and Cost Analysis , Humans
3.
Front Pharmacol ; 10: 607, 2019.
Article in English | MEDLINE | ID: mdl-31281250

ABSTRACT

The present paper continues a more complex research related to the increased synergism in terms of both anti-inflammatory and analgesic effect obtained by the addition of chlorpheniramine (CLF) to the common acetylsalicylic acid (ASA), acetaminophen (PAR), and caffeine (CAF) combination. This synergistic effect was previously highlighted both in vitro in rat models and in vivo in the treatment of migraine. The aim of the research was to further evaluate the analgesic effect of a synergistic low-dose ASA-PAR-CAF-CLF combination in the treatment of low back pain, in a parallel, multiple-dose, double-blind, active controlled clinical trial. A number of 89 patients with low back pain of at least moderate intensity were randomly assigned to receive Algopirin® (ALG), a combinational product containing 125 mg ASA, 75 mg PAR, 15 mg CAF, and 2 mg CLF, or PAR 500 mg, a drug recognized by American Pain Society as "safe and effective" in the treatment of low back pain. One tablet of the assigned product was administered three times a day for seven consecutive days. The patients evaluated their pain level using a Visual Analog Scale prior to administration, and at 1, 2, 4, and 6 h after the morning dose. Time course of effect was similar in structure and size for both treatments. Pain relief appeared rapidly and steadily increased over 4 h after drug administration. Differential pain curves of ALG and PAR were very similar and comparable with the previously determined ALG analgesia pattern in migraine. Differences between the daily mean pain scores were not statistically significant for the two treatments. Similar results were obtained for the Sum of Pain Intensity Differences (SPID) for 0-4 h and 0-6 h intervals as well as for the time course of the proportion of patients with at least 30% and at least 50% pain relief. In conclusion, in spite of very small doses of active components, ALG proved equally effective to the standard low back pain treatment and therefore a viable therapeutic alternative, mainly for patients with gastrointestinal and hepatic sensitivity. Trial Registration: www.ClinicalTrials.gov, identifier EudraCT No.: 2015-002314-74.

SELECTION OF CITATIONS
SEARCH DETAIL
...