Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
J Med Chem ; 66(24): 17059-17073, 2023 12 28.
Article in English | MEDLINE | ID: mdl-38085955

ABSTRACT

Developing drugs for brain infection by Naegleria fowleri is an unmet medical need. We used a combination of cheminformatics, target-, and phenotypic-based drug discovery methods to identify inhibitors that target an essential N. fowleri enzyme, sterol 14-demethylase (NfCYP51). A total of 124 compounds preselected in silico were tested against N. fowleri. Nine primary hits with EC50 ≤ 10 µM were phenotypically identified. Cocrystallization with NfCYP51 focused attention on one primary hit, miconazole-like compound 2a. The S-enantiomer of 2a produced a 1.74 Å cocrystal structure. A set of analogues was then synthesized and evaluated to confirm the superiority of the S-configuration over the R-configuration and the advantage of an ether linkage over an ester linkage. The two compounds, S-8b and S-9b, had an improved EC50 and KD compared to 2a. Importantly, both were readily taken up into the brain. The brain-to-plasma distribution coefficient of S-9b was 1.02 ± 0.12, suggesting further evaluation as a lead for primary amoebic meningoencephalitis.


Subject(s)
Miconazole , Naegleria fowleri , 14-alpha Demethylase Inhibitors/pharmacology , Drug Discovery
2.
Antiviral Res ; 217: 105697, 2023 09.
Article in English | MEDLINE | ID: mdl-37562607

ABSTRACT

For RNA viruses, RNA helicases have long been recognized to play critical roles during virus replication cycles, facilitating proper folding and replication of viral RNAs, therefore representing an ideal target for drug discovery. SARS-CoV-2 helicase, the non-structural protein 13 (nsp13) is a highly conserved protein among all known coronaviruses, and, at the moment, is one of the most explored viral targets to identify new possible antiviral agents. In the present study, we present six diketo acids (DKAs) as nsp13 inhibitors able to block both SARS-CoV-2 nsp13 enzymatic functions. Among them four compounds were able to inhibit viral replication in the low micromolar range, being active also on other human coronaviruses such as HCoV229E and MERS CoV. The experimental investigation of the binding mode revealed ATP-non-competitive kinetics of inhibition, not affected by substrate-displacement effect, suggesting an allosteric binding mode that was further supported by molecular modelling calculations predicting the binding into an allosteric conserved site located in the RecA2 domain.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/genetics , RNA Helicases/metabolism , Virus Replication , Antiviral Agents/pharmacology
3.
Cells ; 12(14)2023 07 19.
Article in English | MEDLINE | ID: mdl-37508554

ABSTRACT

BACKGROUND: Heparanase (HPSE) is an endo-ß-glucuronidase that cleaves heparan sulfate side chains, leading to the disassembly of the extracellular matrix, facilitating cell invasion and metastasis dissemination. In this research, we investigated the role of a new HPSE inhibitor, RDS 3337, in the regulation of the autophagic process and the balance between apoptosis and autophagy in U87 glioblastoma cells. METHODS: After treatment with RDS 3337, cell lysates were analyzed for autophagy and apoptosis-related proteins by Western blot. RESULTS: We observed, firstly, that LC3II expression increased in U87 cells incubated with RDS 3337, together with a significant increase of p62/SQSTM1 levels, indicating that RDS 3337 could act through the inhibition of autophagic-lysosomal flux of LC3-II, thereby leading to accumulation of lipidated LC3-II form. Conversely, the suppression of autophagic flux could activate apoptosis mechanisms, as revealed by the activation of caspase 3, the increased level of cleaved Parp1, and DNA fragmentation. CONCLUSIONS: These findings support the notion that HPSE promotes autophagy, providing evidence that RDS 3337 blocks autophagic flux. It indicates a role for HPSE inhibitors in the balance between apoptosis and autophagy in U87 human glioblastoma cells, suggesting a potential role for this new class of compounds in the control of tumor growth progression.


Subject(s)
Glioblastoma , Humans , Apoptosis , Apoptosis Regulatory Proteins/metabolism , Autophagy , Cell Line, Tumor , Glioblastoma/metabolism , Glucuronidase/antagonists & inhibitors , Glucuronidase/metabolism
4.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-37259337

ABSTRACT

Solid tumors are active tissues containing hypoxic regions and producing metabolic acids. By decreasing pH, cancer cells create a hostile environment for surrounding host cells and foster tumor growth and progression. By governing acid/base regulation, carbonic anhydrases (CAs) are involved in several physiological/pathological processes, including tumors. Indeed, CAs are clinically relevant in cancer therapy as among the fifteen human isoforms, two of them, namely CA IX (overexpressed in solid tumors and associated with increased metastasis and poor prognosis) and CA XII (overexpressed in some tumors) are involved in tumorigenesis. Targeting these two isoforms is considered as a pertinent approach to develop new cancer therapeutics. Several CA inhibitors (CAIs) have been described, even though they are unselective inhibitors of different isoforms. Thus, efforts are needed to find new selective CAIs. In this work, we described new diketo acid derivatives as CAIs, with the best acting compounds 1c and 5 as nanomolar inhibitors of CA IX and XII, being also two orders of magnitude selective over CAs I and II. Molecular modeling studies showed the different binding poses of the best acting CAIs within CA II and IX, highlighting the key structural features that could confer the ability to establish specific interactions within the enzymes. In different tumor cell lines overexpressing CA IX and XII, the tested compounds showed antiproliferative activity already at 24 h treatment, with no effects on somatic not transformed cells.

5.
Int J Mol Sci ; 24(12)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37373540

ABSTRACT

Glucosamine (GlcN) is a glycosaminoglycan (GAGs) constituent in connective tissues. It is naturally produced by our body or consumed from diets. In the last decade, in vitro and in vivo trials have demonstrated that the administration of GlcN or its derivates has a protective effect on cartilage when the balance between catabolic and anabolic processes is disrupted and cells are no longer able to fully compensate for the loss of collagen and proteoglycans. To date, these benefits are still controversial because the mechanism of action of GlcN is not yet well clarified. In this study, we have characterized the biological activities of an amino acid (AA) derivate of GlcN, called DCF001, in the growth and chondrogenic induction of circulating multipotent stem cells (CMCs) after priming with tumor necrosis factor-alpha (TNFα), a pleiotropic cytokine commonly expressed in chronic inflammatory joint diseases. In the present work, stem cells were isolated from the human peripheral blood of healthy donors. After priming with TNFα (10 ng/mL) for 3 h, cultures were treated for 24 h with DCF001 (1 µg/mL) dissolved in a proliferative (PM) or chondrogenic (CM) medium. Cell proliferation was analyzed using a Corning® Cell Counter and trypan blue exclusion technique. To evaluate the potentialities of DCF001 in counteracting the inflammatory response to TNFα, we measured the amount of extracellular ATP (eATP) and the expression of adenosine-generating enzymes CD39/CD73, TNFα receptors, and NF-κB inhibitor IκBα using flow cytometry. Finally, total RNA was extracted to perform a gene expression study of some chondrogenic differentiation markers (COL2A1, RUNX2, and MMP13). Our analysis has shed light on the ability of DCF001 to (a) regulate the expression of CD39, CD73, and TNF receptors; (b) modulate eATP under differentiative induction; (c) enhance the inhibitory activity of IκBα, reducing its phosphorylation after TNFα stimulation; and (d) preserve the chondrogenic potentialities of stem cells. Although preliminary, these results suggest that DCF001 could be a valuable supplement for ameliorating the outcome of cartilage repair interventions, enhancing the efficacy of endogenous stem cells under inflammatory stimuli.


Subject(s)
Chondrocytes , Glucosamine , Humans , Glucosamine/pharmacology , Glucosamine/metabolism , NF-KappaB Inhibitor alpha/metabolism , Chondrocytes/metabolism , Tumor Necrosis Factor-alpha/metabolism , Stem Cells , Cell Differentiation , Inflammation/drug therapy , Inflammation/metabolism , Chondrogenesis , Cells, Cultured
6.
Pharmaceuticals (Basel) ; 16(5)2023 May 11.
Article in English | MEDLINE | ID: mdl-37242514

ABSTRACT

Plants have been known since ancient times for their healing properties, being used as preparations against human diseases of different etiologies. More recently, natural products have been studied and characterized, isolating the phytochemicals responsible for their bioactivity. Most certainly, there are currently numerous active compounds extracted from plants and used as drugs, dietary supplements, or sources of bioactive molecules that are useful in modern drug discovery. Furthermore, phytotherapeutics can modulate the clinical effects of co-administered conventional drugs. In the last few decades, the interest has increased even more in studying the positive synergistic effects between plant-derived bioactives and conventional drugs. Indeed, synergism is a process where multiple compounds act together to exert a merged effect that is greater than that of each of them summed together. The synergistic effects between phytotherapeutics and conventional drugs have been described in different therapeutic areas, and many drugs are based on synergistic interactions with plant derivatives. Among them, caffeine has shown positive synergistic effects with different conventional drugs. Indeed, in addition to their multiple pharmacological activities, a growing body of evidence highlights the synergistic effects of caffeine with different conventional drugs in various therapeutic fields. This review aims to provide an overview of the synergistic therapeutic effects of caffeine and conventional drugs, summarizing the progress reported to date.

7.
Molecules ; 28(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36615531

ABSTRACT

BACKGROUND: As a result of the paucity of treatment, Leishmaniasis continues to provoke about 60,000 deaths every year worldwide. New molecules are needed, and drug discovery research is oriented toward targeting proteins crucial for parasite survival. Among them, trypanothione reductase (TR) is of remarkable interest owing to its vital role in Leishmania species protozoan parasite life. Our previously identified compound 1 is a novel chemotype endowed with a unique mode of TR inhibition thanks to its binding to a formerly unknown but druggable site at the entrance of the NADPH binding cavity, absent in human glutathione reductase (hGR). METHODS: We designed and synthesized new 3-amino-1-arylpropan-1-one derivatives structurally related to compound 1 and evaluated their potential inhibition activity on TR from Leishmania infantum (LiTR). Cluster docking was performed to assess the binding poses of the compounds. RESULTS: The newly synthesized compounds were screened at a concentration of 100 µM in in vitro assays and all of them proved to be active with residual activity percentages lower than 75%. CONCLUSIONS: Compounds 2a and 2b were the most potent inhibitors found, suggesting that an additional aromatic ring might be promising for enzymatic inhibition. Further structure-activity relationships are needed to optimize our compounds activity.


Subject(s)
Antiprotozoal Agents , Leishmania infantum , Humans , NADP/metabolism , Models, Molecular , NADH, NADPH Oxidoreductases , Binding Sites , Antiprotozoal Agents/pharmacology
8.
Int J Mol Sci ; 23(18)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36142359

ABSTRACT

Histone acetyltransferases (HATs) are involved in the epigenetic positive control of gene expression in eukaryotes. CREB-binding proteins (CBP)/p300, a subfamily of highly conserved HATs, have been shown to function as acetylases on both histones and non-histone proteins. In the model plant Arabidopsis thaliana among the five CBP/p300 HATs, HAC1, HAC5 and HAC12 have been shown to be involved in the ethylene signaling pathway. In addition, HAC1 and HAC5 interact and cooperate with the Mediator complex, as in humans. Therefore, it is potentially difficult to discriminate the effect on plant development of the enzymatic activity with respect to their Mediator-related function. Taking advantage of the homology of the human HAC catalytic domain with that of the Arabidopsis, we set-up a phenotypic assay based on the hypocotyl length of Arabidopsis dark-grown seedlings to evaluate the effects of a compound previously described as human p300/CBP inhibitor, and to screen previously described cinnamoyl derivatives as well as newly synthesized analogues. We selected the most effective compounds, and we demonstrated their efficacy at phenotypic and molecular level. The in vitro inhibition of the enzymatic activity proved the specificity of the inhibitor on the catalytic domain of HAC1, thus substantiating this strategy as a useful tool in plant epigenetic studies.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Acetylation , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arsenate Reductases/metabolism , CREB-Binding Protein/metabolism , Ethylenes/metabolism , Histone Acetyltransferases/metabolism , Histones/metabolism , Humans , Mediator Complex/metabolism , p300-CBP Transcription Factors/metabolism
9.
Molecules ; 27(12)2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35744845

ABSTRACT

Influenza viruses are transmitted from human to human via airborne droplets and can be transferred through contaminated environmental surfaces. Some works have demonstrated the efficacy of essential oils (EOs) as antimicrobial and antiviral agents, but most of them examined the liquid phases, which are generally toxic for oral applications. In our study, we describe the antiviral activity of Citrus bergamia, Melaleuca alternifolia, Illicium verum and Eucalyptus globulus vapor EOs against influenza virus type A. In the vapor phase, C. bergamia and M. alternifolia strongly reduced viral cytopathic effect without exerting any cytotoxicity. The E. globulus vapor EO reduced viral infection by 78% with no cytotoxicity, while I. verum was not effective. Furthermore, we characterized the EOs and their vapor phase by the head-space gas chromatography-mass spectrometry technique, observing that the major component found in each liquid EO is the same one of the corresponding vapor phases, with the exception of M. alternifolia. To deepen the mechanism of action, the morphological integrity of virus particles was checked by negative staining transmission electron microscopy, showing that they interfere with the lipid bilayer of the viral envelope, leading to the decomposition of membranes. We speculated that the most abundant components of the vapor EOs might directly interfere with influenza virus envelope structures or mask viral structures important for early steps of viral infection.


Subject(s)
Anti-Infective Agents , Eucalyptus , Influenza A Virus, H1N1 Subtype , Melaleuca , Oils, Volatile , Anti-Infective Agents/pharmacology , Antiviral Agents/pharmacology , Eucalyptus/chemistry , Melaleuca/chemistry , Oils, Volatile/chemistry , Oils, Volatile/pharmacology
10.
Pharmaceuticals (Basel) ; 15(6)2022 May 27.
Article in English | MEDLINE | ID: mdl-35745594

ABSTRACT

Alzheimer disease is an age-linked neurodegenerative disorder representing one of the greatest medical care challenges of our century. Several drugs are useful in ameliorating the symptoms, even if none could stop or reverse disease progression. The standard approach is represented by the cholinesterase inhibitors (ChEIs) that restore the levels of acetylcholine (ACh) by inhibiting the acetylcholinesterase (AChE). Still, their limited efficacy has prompted researchers to develop new ChEIs that could also reduce the oxidative stress by exhibiting antioxidant properties and by chelating the main metals involved in the disease. Recently, we developed some derivatives constituted by a 2-amino-pyrimidine or a 2-amino-pyridine moiety connected to various aromatic groups by a flexible amino-alkyl linker as new dual inhibitors of AChE and butyrylcholinesterase (BChE). Following our previous studies, in this work we explored the role of the flexible linker by replacing the amino group with an amide or a carbamic group. The most potent compounds showed higher selectivity against BChE in respect to AChE, proving also to possess a weak anti-aggregating activity toward Aß42 and tau and to be able to chelate Cu2+ and Fe3+ ions. Molecular docking and molecular dynamic studies proposed possible binding modes with the enzymes. It is noteworthy that these compounds were predicted as BBB-permeable and showed low cytotoxicity on the human brain cell line.

11.
EXCLI J ; 21: 544-553, 2022.
Article in English | MEDLINE | ID: mdl-35651654

ABSTRACT

Different types of tissues respond differently to the action of oxidative stress. The visual system is very sensitive to oxidative action due to continuous exposure to light. In consideration of the growing interest of scientific studies towards various compounds endowed with antioxidant and anti-inflammatory properties, we performed a review of the literature focusing on the use of some antioxidant molecules for the treatment of conditions affecting the visual system. In this study, we focused on the ability of two antioxidant agents, the small molecule α-lipoic acid (ALA) and the enzyme superoxide dismutase (SOD), to influence the neurodegenerative physiological processes related to aging and oxidative stress affecting the ocular segment. The literature data report that ALA and SOD can protect against neurodegenerative effects both the optic nerve and retina and, if administered together, they are able to lower the levels of oxidative stress, thus preventing neurodegeneration and reducing the apoptotic process.

12.
Pharmaceutics ; 14(5)2022 May 12.
Article in English | MEDLINE | ID: mdl-35631629

ABSTRACT

Histoplasma capsulatum is a fungus that causes histoplasmosis. The increased evolution of microbial resistance and the adverse effects of current antifungals help new drugs to emerge. In this work, fifty-four nitrofurans and indoles were tested against the H. capsulatum EH-315 strain. Compounds with a minimum inhibitory concentration (MIC90) equal to or lower than 7.81 µg/mL were selected to evaluate their MIC90 on ATCC G217-B strain and their minimum fungicide concentration (MFC) on both strains. The quantification of membrane ergosterol, cell wall integrity, the production of reactive oxygen species, and the induction of death by necrosis-apoptosis was performed to investigate the mechanism of action of compounds 7, 11, and 32. These compounds could reduce the extracted sterol and induce necrotic cell death, similarly to itraconazole. Moreover, 7 and 11 damaged the cell wall, causing flaws in the contour (11), or changing the size and shape of the fungal cell wall (7). Furthermore, 7 and 32 induced reactive oxygen species (ROS) formation higher than 11 and control. Finally, the cytotoxicity was measured in two models of cell culture, i.e., monolayers (cells are flat) and a three-dimensional (3D) model, where they present a spheroidal conformation. Cytotoxicity assays in the 3D model showed a lower toxicity in the compounds than those performed on cell monolayers. Overall, these results suggest that derivatives of nitrofurans and indoles are promising compounds for the treatment of histoplasmosis.

13.
Pharmaceutics ; 14(3)2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35335969

ABSTRACT

Fungal diseases affect more than 1 billion people worldwide. The constant global changes, the advent of new pandemics, and chronic diseases favor the diffusion of fungal pathogens such as Candida, Cryptococcus, Aspergillus, Trichophyton, Histoplasma capsulatum, and Paracoccidioides brasiliensis. In this work, a series of nitrofuran derivatives were synthesized and tested against different fungal species; most of them showed inhibitory activity, fungicide, and fungistatic profile. The minimal inhibitory concentration (MIC90) values for the most potent compounds range from 0.48 µg/mL against H. capsulatum (compound 11) and P. brasiliensis (compounds 3 and 9) to 0.98 µg/mL against Trichophyton rubrum and T. mentagrophytes (compounds 8, 9, 12, 13 and 8, 12, 13, respectively), and 3.9 µg/mL against Candida and Cryptococcus neoformans strains (compounds 1 and 5, respectively). In addition, all compounds showed low toxicity when tested in vitro on lung cell lines (A549 and MRC-5) and in vivo in Caenorhabditis elegans larvae. Many of them showed high selectivity index values. Thus, these studied nitrofuran derivatives proved to be potent against different fungal species, characterized by low toxicity and high selectivity; for these reasons, they may become promising compounds for the treatment of mycoses.

14.
Invest New Drugs ; 40(3): 556-564, 2022 06.
Article in English | MEDLINE | ID: mdl-35312942

ABSTRACT

Our group recently demonstrated that K858, an inhibitor of motor kinesin Eg5, has important antiproliferative and apoptotic effects on breast cancer, prostatic cancer, melanoma and glioblastoma cells. Since high levels of kinesin Eg5 expression have been correlated with a poor prognosis in laryngeal carcinoma, we decided to test the anticancer activity of K858 toward this tumor, which belongs to the group of head and neck squamous cell carcinomas (HNSCCs). These cancers are characterized by low responsiveness to therapy. The effects of K858 on the proliferation and assembly of mitotic spindles of three human HNSCC cell lines were studied using cytotoxicity assays and immunofluorescence for tubulin. The effect of K858 on the cell cycle was analyzed by FACS. The expression levels of cyclin B1 and several markers of apoptosis and invasion were studied by Western blot. Finally, the negative regulation of the malignant phenotype by K858 was evaluated by an invasion assay. K858 inhibited cell replication by rendering cells incapable of developing normal bipolar mitotic spindles. At the same time, K858 blocked the cell cycle in the G2 phase and induced the accumulation of cytoplasmic cyclin B and, eventually, apoptosis. Additionally, K858 inhibited cell migration and attenuated the malignant phenotype. The data described confirm that kinesin Eg5 is an interesting target for new anticancer strategies and suggest that this compound may be a powerful tool for an alternative therapeutic approach to HNSCCs.


Subject(s)
Antineoplastic Agents , Head and Neck Neoplasms , Kinesins , Thiadiazoles , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Enzyme Inhibitors/pharmacology , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/pathology , Humans , Kinesins/antagonists & inhibitors , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/pathology , Thiadiazoles/pharmacology
15.
Int J Mol Sci ; 22(23)2021 Dec 04.
Article in English | MEDLINE | ID: mdl-34884931

ABSTRACT

Neuroblastoma is a severe childhood disease, accounting for ~10% of all infant cancers. The amplification of the MYCN gene, coding for the N-Myc transcription factor, is an essential marker correlated with tumor progression and poor prognosis. In neuroblastoma cells, the mitotic kinase Aurora-A (AURKA), also frequently overexpressed in cancer, prevents N-Myc degradation by directly binding to a highly conserved N-Myc region. As a result, elevated levels of N-Myc are observed. During recent years, it has been demonstrated that some ATP competitive inhibitors of AURKA also cause essential conformational changes in the structure of the activation loop of the kinase that prevents N-Myc binding, thus impairing the formation of the AURKA/N-Myc complex. In this study, starting from a screening of crystal structures of AURKA in complexes with known inhibitors, we identified additional compounds affecting the conformation of the kinase activation loop. We assessed the ability of such compounds to disrupt the interaction between AURKA and N-Myc in vitro, using Surface Plasmon Resonance competition assays, and in tumor cell lines overexpressing MYCN, by performing Proximity Ligation Assays. Finally, their effects on N-Myc cellular levels and cell viability were investigated. Our results identify PHA-680626 as an amphosteric inhibitor both in vitro and in MYCN overexpressing cell lines, thus expanding the repertoire of known conformational disrupting inhibitors of the AURKA/N-Myc complex and confirming that altering the conformation of the activation loop of AURKA with a small molecule is an effective strategy to destabilize the AURKA/N-Myc interaction in neuroblastoma cancer cells.


Subject(s)
Aurora Kinase A/metabolism , N-Myc Proto-Oncogene Protein/metabolism , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Pyrroles/pharmacology , Adenosine Triphosphate/metabolism , Antineoplastic Agents/pharmacology , Aurora Kinase A/antagonists & inhibitors , Aurora Kinase A/chemistry , Azepines/metabolism , Azepines/pharmacology , Benzazepines/metabolism , Benzazepines/pharmacology , Binding Sites , Binding, Competitive , Cell Line , Drug Evaluation, Preclinical/methods , Humans , N-Myc Proto-Oncogene Protein/chemistry , Neuroblastoma/drug therapy , Neuroblastoma/metabolism , Protein Conformation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Pyrazoles/metabolism , Pyrimidines/metabolism , Pyrimidines/pharmacology , Pyrroles/metabolism , Surface Plasmon Resonance
16.
Int J Mol Sci ; 22(21)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34769176

ABSTRACT

Ocular fibrosis leads to severe visual impairment and blindness worldwide, being a major area of unmet need in ophthalmology and medicine. To date, the only available treatments are antimetabolite drugs that have significant potentially blinding side effects, such as tissue damage and infection. There is thus an urgent need to identify novel targets to prevent/treat scarring and postsurgical fibrosis in the eye. In this review, the latest progress in biological mechanisms underlying ocular fibrosis are discussed. We also summarize the current knowledge on preclinical studies based on viral and non-viral gene therapy, as well as chemical inhibitors, for targeting TGFß or downstream effectors in fibrotic disorders of the eye. Moreover, the role of angiogenetic and biomechanical factors in ocular fibrosis is discussed, focusing on related preclinical treatment approaches. Moreover, we describe available evidence on clinical studies investigating the use of therapies targeting TGFß-dependent pathways, angiogenetic factors, and biomechanical factors, alone or in combination with other strategies, in ocular tissue fibrosis. Finally, the recent progress in cell-based therapies for treating fibrotic eye disorders is discussed. The increasing knowledge of these disorders in the eye and the promising results from testing of novel targeted therapies could offer viable perspectives for translation into clinical use.


Subject(s)
Eye Diseases , Signal Transduction , Transforming Growth Factor beta/metabolism , Eye Diseases/metabolism , Eye Diseases/pathology , Fibrosis , Humans
17.
ACS Chem Neurosci ; 12(21): 4090-4112, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34652128

ABSTRACT

A new series of pyrimidine and pyridine diamines was designed as dual binding site inhibitors of cholinesterases (ChEs), characterized by two small aromatic moieties separated by a diaminoalkyl flexible linker. Many compounds are mixed or uncompetitive acetylcholinesterase (AChE) and/or butyrylcholinesterase (BChE) nanomolar inhibitors, with compound 9 being the most active on Electrophorus electricus AChE (EeAChE) (Ki = 0.312 µM) and compound 22 on equine BChE (eqBChE) (Ki = 0.099 µM). Molecular docking and molecular dynamic studies confirmed the interaction mode of our compounds with the enzymatic active site. UV-vis spectroscopic studies showed that these compounds can form complexes with Cu2+ and Fe3+ and that compounds 18, 20, and 30 have antioxidant properties. Interestingly, some compounds were also able to reduce Aß42 and tau aggregation, with compound 28 being the most potent (22.3 and 17.0% inhibition at 100 µM on Aß42 and tau, respectively). Moreover, the most active compounds showed low cytotoxicity on a human brain cell line and they were predicted as BBB-permeable.


Subject(s)
Alzheimer Disease , Cholinesterase Inhibitors , Acetylcholinesterase/metabolism , Animals , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Horses , Humans , Molecular Docking Simulation , Molecular Structure , Pyridines , Pyrimidines/pharmacology , Structure-Activity Relationship
18.
Molecules ; 26(15)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34361654

ABSTRACT

Growing attention to environmental protection leads food industries to adopt a model of "circular economy" applying safe and sustainable technologies to recover, recycle and valorize by-products. Therefore, by-products become raw material for other industries. Tomato processing industry produces significant amounts of by-products, consisting of skins and seeds. Tomato skin is very rich in lycopene, and from its seeds, high nutritional oil can be extracted. Alternative use of the two fractions not only could cut disposal costs but also allow one to extract bioactive compounds and an oil with a high nutritional value. This review focused on the recent advance in extraction of lycopene, whose beneficial effects on health are widely recognized.


Subject(s)
Antioxidants/isolation & purification , Food Handling/methods , Lycopene/isolation & purification , Solanum lycopersicum , Solanum lycopersicum/chemistry , Solanum lycopersicum/metabolism
19.
Pharmaceuticals (Basel) ; 14(6)2021 Jun 12.
Article in English | MEDLINE | ID: mdl-34204738

ABSTRACT

Nocodazole is an antineoplastic agent that exerts its effects by depolymerizing microtubules. Herein we report a structural analog of nocodazole, a (1H-pyrrol-1-yl)methyl-1H-benzoimidazole carbamate ester derivative, named RDS 60. We evaluated the antineoplastic properties of RDS 60 in two human head and neck squamous cell carcinoma (HNSCC) cell lines and we found that this compound significantly inhibited replication of both HNSCC cell lines without inducing any important cytotoxic effect on human dermal fibroblasts and human keratinocytes. The treatment of HNSCC cell lines with 1 µM RDS 60 for 24 h stopped development of normal bipolar mitotic spindles and, at the same time, blocked the cell cycle in G2/M phase together with cytoplasmic accumulation of cyclin B1. Consequently, treatment with 2 µM RDS 60 for 24 h induced the activation of apoptosis in both HNSCC cell lines. Additionally, RDS 60 was able to reverse the epithelial-mesenchymal transition and to inhibit cell migration and extracellular matrix infiltration of both HNSCC cell lines. The reported results demonstrate that this compound has a potent effect in blocking cell cycle, inducing apoptosis and inhibiting cell motility and stromal invasion of HNSCC cell lines. Therefore, the ability of RDS 60 to attenuate the malignancy of tumor cells suggests its potential role as an interesting and powerful tool for new approaches in treating HNSCC.

20.
Curr Med Chem ; 28(30): 6146-6178, 2021.
Article in English | MEDLINE | ID: mdl-34225606

ABSTRACT

Multiple combinations of antiretroviral drugs have remarkably improved the treatment of HIV-1 infection. However, life-long treatments and drug resistance are still an open issue that requires continuous efforts for the identification of novel antiviral drugs. BACKGROUND: The reverse transcriptase-associated ribonuclease H (RNase H) hydrolyzes the HIV genome to allow synthesizing viral DNA. Currently, no RNase H inhibitors (RHIs) have reached the clinical phase. Therefore, RNase H can be defined as an attractive target for drug design. OBJECTIVE: Despite the wealth of information available for RNase H domain, the development of RHIs with high specificity and low cellular toxicity has been disappointing. However, it is now becoming increasingly evident that reverse transcriptase is a highly versatile enzyme, undergoing major structural alterations to complete its catalysis, and that exists a close spatial and temporal interplay between reverse transcriptase polymerase and RNase H domains. This review sums up the present challenges in targeting RNase H encompassing the challenges in selectively inhibiting RNase H vs polymerase and/or HIV-1 integrase and the weak antiviral activity of active site inhibitors, probably for a substrate barrier that impedes small molecules to reach the targeted site. Moreover, the focus is given on the most recent progress in the field of medicinal chemistry that has led to the identification of several small molecules as RHIs in the last few years. CONCLUSION: RHIs could be a new class of drugs with a novel mechanism of action highly precious for the treatment of resistant HIV strains.


Subject(s)
HIV Reverse Transcriptase , Ribonuclease H , Antiviral Agents , Drug Design , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...