Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 377(2141): 20170439, 2019 Mar 25.
Article in English | MEDLINE | ID: mdl-30967053

ABSTRACT

The question of size of a tokamak fusion reactor is central to current fusion research especially with the large device, ITER, under construction and even larger DEMO reactors under initial engineering design. In this paper, the question of size is addressed initially from a physics perspective. It is shown that in addition to size, field and plasma shape are important too, and shape can be a significant factor. For a spherical tokamak (ST), the elongated shape leads to significant reductions in major radius and/or field for comparable fusion performance. Further, it is shown that when the density limit is taken into account, the relationship between fusion power and fusion gain is almost independent of size, implying that relatively small, high performance reactors should be possible. In order to realize a small, high performance fusion module based on the ST, feasible solutions to several key technical challenges must be developed. These are identified and possible design solutions outlined. The results of the physics, technical and engineering studies are integrated using the Tokamak Energy system code, and the results of a scoping study are reviewed. The results indicate that a relatively small ST using high temperature superconductor magnets should be feasible and may provide an alternative, possibly faster, 'small modular' route to fusion power. This article is part of a discussion meeting issue 'Fusion energy using tokamaks: can development be accelerated?'.

2.
Rev Sci Instrum ; 79(10): 10F304, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19044617

ABSTRACT

The next generation of large scale fusion devices--ITER/LMJ/NIF--will require diagnostic components to operate in environments far more severe than those encountered in present facilities. This harsh environment is the result of high fluxes of neutrons, gamma rays, energetic ions, electromagnetic radiation, and in some cases, debris and shrapnel, at levels several orders of magnitude higher than those experienced in today's devices. The similarities and dissimilarities between environmental effects on diagnostic components for the inertial confinement and magnetic confinement fusion fields have been assessed. Areas in which considerable overlap have been identified are optical transmission materials and optical fibers in particular, neutron detection systems and electronics needs. Although both fields extensively use cables in the hostile environment, there is little overlap because the environments and requirements are very different.

SELECTION OF CITATIONS
SEARCH DETAIL