Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 8954, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37268661

ABSTRACT

The Y chromosome carries information about the demography of paternal lineages, and thus, can prove invaluable for retracing both the evolutionary trajectory of wild animals and the breeding history of domesticates. In horses, the Y chromosome shows a limited, but highly informative, sequence diversity, supporting the increasing breeding influence of Oriental lineages during the last 1500 years. Here, we augment the primary horse Y-phylogeny, which is currently mainly based on modern horse breeds of economic interest, with haplotypes (HT) segregating in remote horse populations around the world. We analyze target enriched sequencing data of 5 Mb of the Y chromosome from 76 domestic males, together with 89 whole genome sequenced domestic males and five Przewalski's horses from previous studies. The resulting phylogeny comprises 153 HTs defined by 2966 variants and offers unprecedented resolution into the history of horse paternal lineages. It reveals the presence of a remarkable number of previously unknown haplogroups in Mongolian horses and insular populations. Phylogenetic placement of HTs retrieved from 163 archaeological specimens further indicates that most of the present-day Y-chromosomal variation evolved after the domestication process that started around 4200 years ago in the Western Eurasian steppes. Our comprehensive phylogeny significantly reduces ascertainment bias and constitutes a robust evolutionary framework for analyzing horse population dynamics and diversity.


Subject(s)
Animals, Wild , Biological Evolution , Male , Animals , Horses/genetics , Phylogeny , Animals, Wild/genetics , Y Chromosome/genetics , Genome , Haplotypes , Genetic Variation , DNA, Mitochondrial/genetics
2.
Genes (Basel) ; 13(2)2022 01 26.
Article in English | MEDLINE | ID: mdl-35205275

ABSTRACT

The Y chromosome is a valuable genetic marker for studying the origin and influence of paternal lineages in populations. In this study, we conducted Y-chromosomal lineage-tracing in Arabian horses. First, we resolved a Y haplotype phylogeny based on the next generation sequencing data of 157 males from several breeds. Y-chromosomal haplotypes specific for Arabian horses were inferred by genotyping a collection of 145 males representing most Arabian sire lines that are active around the globe. These lines formed three discrete haplogroups, and the same haplogroups were detected in Arabian populations native to the Middle East. The Arabian haplotypes were clearly distinct from the ones detected in Akhal Tekes, Turkoman horses, and the progeny of two Thoroughbred foundation sires. However, a haplotype introduced into the English Thoroughbred by the stallion Byerley Turk (1680), was shared among Arabians, Turkomans, and Akhal Tekes, which opens a discussion about the historic connections between Oriental horse types. Furthermore, we genetically traced Arabian sire line breeding in the Western World over the past 200 years. This confirmed a strong selection for relatively few male lineages and uncovered incongruences to written pedigree records. Overall, we demonstrate how fine-scaled Y-analysis contributes to a better understanding of the historical development of horse breeds.


Subject(s)
Genetic Variation , Y Chromosome , Animals , Female , Haplotypes , Horses/genetics , Male , Pedigree , Phylogeny , Y Chromosome/genetics
3.
Genet Sel Evol ; 49(1): 85, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-29141579

ABSTRACT

BACKGROUND: Curly horses present a variety of curl phenotypes that are associated with various degrees of curliness of coat, mane, tail and ear hairs. Their origin is still a matter of debate and several genetic hypotheses have been formulated to explain the diversity in phenotype, including the combination of autosomal dominant and recessive alleles. Our purpose was to map the autosomal dominant curly hair locus and identify the causal variant using genome-wide association study (GWAS) and whole-genome sequencing approaches. RESULTS: A GWAS was performed using a Bayesian sparse linear mixed model, based on 51 curly and 19 straight-haired French and North American horses from 13 paternal families genotyped on the Illumina EquineSNP50 BeadChip. A single strong signal was observed on equine chromosome 11, in a region that encompasses the type I keratin gene cluster. This region was refined by haplotype analysis to a segment including 36 genes, among which are 10 keratin genes (KRT-10, -12, -20, -23, -24, -25, -26, -27, -28, -222). To comprehensively identify candidate causal variants within all these genes, whole-genome sequences were obtained for one heterozygous curly stallion and its straight-haired son. Among the four non-synonymous candidate variants identified and validated in the curly region, only variant g.21891160G>A in the KRT25 gene (KRT25:p.R89H) was in perfect agreement with haplotype status in the whole pedigree. Genetic association was then confirmed by genotyping a larger population consisting of 353 horses. However, five discordant curly horses were observed, which carried neither the variant nor the main haplotype associated with curliness. Sequencing of KRT25 for two discordant horses did not identify any other deleterious variant, which suggests locus rather than allelic heterogeneity for the curly phenotype. CONCLUSIONS: We identified the KRT25:p.R89H variant as responsible for the dominant curly trait, but a second dominant locus may also be involved in the shape of hairs within North American Curly horses.


Subject(s)
Genome-Wide Association Study/methods , Horses/genetics , Keratins, Hair-Specific/genetics , Mutation, Missense/genetics , Animals , Bayes Theorem , Chromosomes, Human, Pair 11/genetics , Genotype , Haplotypes/genetics , Heterozygote , Humans , Phenotype
4.
PLoS One ; 8(9): e75639, 2013.
Article in English | MEDLINE | ID: mdl-24086599

ABSTRACT

Equine Multiple Congenital Ocular Anomalies (MCOA) syndrome is a heritable eye disorder mainly affecting silver colored horses. Clinically, the disease manifests in two distinct classes depending on the horse genotype. Horses homozygous for the mutant allele present with a wide range of ocular defects, such as iris stromal hypoplasia, abnormal pectinate ligaments, megaloglobus, iridociliary cysts and cataracts. The phenotype of heterozygous horses is less severe and predominantly includes iridociliary cysts, which occasionally extend into the temporal retina. In order to determine the genetic cause of MCOA syndrome we sequenced the entire previously characterized 208 kilobase region on chromosome 6 in ten individuals; five MCOA affected horses from three different breeds, one horse with the intermediate Cyst phenotype and four unaffected controls from two different breeds. This was performed using Illumina TruSeq technology with paired-end reads. Through the systematic exclusion of all polymorphisms barring two SNPs in PMEL, a missense mutation previously reported to be associated with the silver coat colour and a non-conserved intronic SNP, we establish that this gene is responsible for MCOA syndrome. Our finding, together with recent advances that show aberrant protein function due to the coding mutation, suggests that the missense mutation is causative and has pleiotrophic effect, causing both the horse silver coat color and MCOA syndrome.


Subject(s)
Eye Abnormalities/genetics , Horse Diseases/genetics , Horses/genetics , Mutation, Missense/genetics , Silver/metabolism , Alleles , Animals , Chromosomes/genetics , Eye Abnormalities/metabolism , Genetic Association Studies/methods , Genotype , Heterozygote , Homozygote , Horse Diseases/metabolism , Horses/metabolism , Phenotype , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA
5.
Nature ; 488(7413): 642-6, 2012 Aug 30.
Article in English | MEDLINE | ID: mdl-22932389

ABSTRACT

Locomotion in mammals relies on a central pattern-generating circuitry of spinal interneurons established during development that coordinates limb movement. These networks produce left-right alternation of limbs as well as coordinated activation of flexor and extensor muscles. Here we show that a premature stop codon in the DMRT3 gene has a major effect on the pattern of locomotion in horses. The mutation is permissive for the ability to perform alternate gaits and has a favourable effect on harness racing performance. Examination of wild-type and Dmrt3-null mice demonstrates that Dmrt3 is expressed in the dI6 subdivision of spinal cord neurons, takes part in neuronal specification within this subdivision, and is critical for the normal development of a coordinated locomotor network controlling limb movements. Our discovery positions Dmrt3 in a pivotal role for configuring the spinal circuits controlling stride in vertebrates. The DMRT3 mutation has had a major effect on the diversification of the domestic horse, as the altered gait characteristics of a number of breeds apparently require this mutation.


Subject(s)
Gait/genetics , Horses/genetics , Horses/physiology , Mutation/genetics , Spinal Cord/physiology , Transcription Factors/genetics , Amino Acid Sequence , Animals , Codon, Nonsense/genetics , Gait/physiology , Gene Expression Profiling , Gene Frequency , Horses/classification , Iceland , Mice , Molecular Sequence Data , Neural Pathways/physiology , Psychomotor Performance/physiology , Spinal Cord/cytology , Transcription Factors/deficiency , Transcription Factors/metabolism
6.
Genome Res ; 22(5): 899-907, 2012 May.
Article in English | MEDLINE | ID: mdl-22383489

ABSTRACT

Copy number variants (CNVs) represent a substantial source of genetic variation in mammals. However, the occurrence of CNVs in horses and their subsequent impact on phenotypic variation is unknown. We performed a study to identify CNVs in 16 horses representing 15 distinct breeds (Equus caballus) and an individual gray donkey (Equus asinus) using a whole-exome tiling array and the array comparative genomic hybridization methodology. We identified 2368 CNVs ranging in size from 197 bp to 3.5 Mb. Merging identical CNVs from each animal yielded 775 CNV regions (CNVRs), involving 1707 protein- and RNA-coding genes. The number of CNVs per animal ranged from 55 to 347, with median and mean sizes of CNVs of 5.3 kb and 99.4 kb, respectively. Approximately 6% of the genes investigated were affected by a CNV. Biological process enrichment analysis indicated CNVs primarily affected genes involved in sensory perception, signal transduction, and metabolism. CNVs also were identified in genes regulating blood group antigens, coat color, fecundity, lactation, keratin formation, neuronal homeostasis, and height in other species. Collectively, these data are the first report of copy number variation in horses and suggest that CNVs are common in the horse genome and may modulate biological processes underlying different traits observed among horses and horse breeds.


Subject(s)
DNA Copy Number Variations , Horses/genetics , Animals , Base Sequence , Bone Morphogenetic Protein Receptors, Type I/genetics , Cluster Analysis , Comparative Genomic Hybridization , Exome , Genome , Molecular Sequence Annotation , Molecular Sequence Data , Phenotype , gp100 Melanoma Antigen/genetics
7.
PLoS One ; 6(3): e18194, 2011 Mar 30.
Article in English | MEDLINE | ID: mdl-21479181

ABSTRACT

The role of European wild horses in horse domestication is poorly understood. While the fossil record for wild horses in Europe prior to horse domestication is scarce, there have been suggestions that wild populations from various European regions might have contributed to the gene pool of domestic horses. To distinguish between regions where domestic populations are mainly descended from local wild stock and those where horses were largely imported, we investigated patterns of genetic diversity in 24 European horse breeds typed at 12 microsatellite loci. The distribution of high levels of genetic diversity in Europe coincides with the distribution of predominantly open landscapes prior to domestication, as suggested by simulation-based vegetation reconstructions, with breeds from Iberia and the Caspian Sea region having significantly higher genetic diversity than breeds from central Europe and the UK, which were largely forested at the time the first domestic horses appear there. Our results suggest that not only the Eastern steppes, but also the Iberian Peninsula provided refugia for wild horses in the Holocene, and that the genetic contribution of these wild populations to local domestic stock may have been considerable. In contrast, the consistently low levels of diversity in central Europe and the UK suggest that domestic horses in these regions largely derive from horses that were imported from the Eastern refugium, the Iberian refugium, or both.


Subject(s)
Biological Evolution , Ecosystem , Horses/physiology , Animals , Breeding , Europe , Gene Pool , Genetic Variation , Geography , Microsatellite Repeats/genetics , Middle East , Time Factors
8.
Mamm Genome ; 22(5-6): 353-60, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21465164

ABSTRACT

The syndrome Multiple Congenital Ocular Anomalies (MCOA) is the collective name ascribed to heritable congenital eye defects in horses. Individuals homozygous for the disease allele (MCOA phenotype) have a wide range of eye anomalies, while heterozygous horses (Cyst phenotype) predominantly have cysts that originate from the temporal ciliary body, iris, and/or peripheral retina. MCOA syndrome is highly prevalent in the Rocky Mountain Horse but the disease is not limited to this breed. Affected horses most often have a Silver coat color; however, a pleiotropic link between these phenotypes is yet to be proven. Locating and possibly isolating these traits would provide invaluable knowledge to scientists and breeders. This would favor maintenance of a desirable coat color while addressing the health concerns of the affected breeds, and would also provide insight into the genetic basis of the disease. Identical-by-descent mapping was used to narrow the previous 4.6-Mb region to a 264-kb interval for the MCOA locus. One haplotype common to four breeds showed complete association to the disease (Cyst phenotype, n = 246; MCOA phenotype, n = 83). Candidate genes from the interval, SMARCC2 and IKZF4, were screened for polymorphisms and genotyped, and segregation analysis allowed the MCOA syndrome region to be shortened to 208 kb. This interval also harbors PMEL17, the gene causative for Silver coat color. However, by shortening the MCOA locus by a factor of 20, 176 other genes have been unlinked from the disease and only 15 genes remain.


Subject(s)
Chromosomes, Mammalian/genetics , Eye Abnormalities/veterinary , Genetic Loci/genetics , Horse Diseases/genetics , Animals , Base Sequence , Chromosome Mapping , Eye Abnormalities/genetics , Genotype , Haplotypes/genetics , Horses , Microsatellite Repeats/genetics , Molecular Sequence Data , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA , Species Specificity , Syndrome , Transcription Factors/genetics
9.
BMC Genet ; 9: 88, 2008 Dec 19.
Article in English | MEDLINE | ID: mdl-19099555

ABSTRACT

BACKGROUND: Equine Multiple Congenital Ocular Anomalies (MCOA) syndrome consists of a diverse set of abnormalities predominantly localized to the frontal part of the eye. The disease is in agreement with a codominant mode of inheritance in our horse material. Animals presumed to be heterozygous for the mutant allele have cysts originating from the temporal ciliary body, peripheral retina and/or iris. In contrast, animals predicted to be homozygous for the disease-causing allele possess a wide range of multiple abnormalities, including iridociliary and/or peripheral retinal cysts, iridocorneal angle abnormalities, cornea globosa, iris hypoplasia and congenital cataracts. MCOA is most common in the Rocky Mountain horse breed where it occurs at a high frequency among Silver colored horses. The Silver coat color is associated with mutations in PMEL17 that resides on ECA6q23. To map the MCOA locus we analyzed 11 genetic markers on ECA6q and herein describe a chromosome interval for the MCOA locus. RESULTS: We performed linkage analysis within 17 paternal half-sib families of the Rocky Mountain horse breed. More than half of the 131 offspring had the Cyst phenotype and about one third had MCOA. Segregation data were obtained by genotyping 10 microsatellite markers most of which are positioned on ECA6q22-23, as well as the missense mutation for the Silver phenotype in PMEL17. Significant linkage was found between the MCOA locus and eight of the genetic markers, where marker UPP5 (Theta = 0, z = 12.3), PMEL17ex11 (Theta = 0, z = 19.0) and UPP6 (Theta = 0, z = 17.5) showed complete linkage with the MCOA locus. DNA sequencing of PMEL17 in affected and healthy control individuals did not reveal any additional mutations than the two mutations associated with the Silver coat color. CONCLUSION: The MCOA locus can with high confidence be positioned within a 4.9 megabase (Mb) interval on ECA6q. The genotype data on UPP5, PMEL17ex11 and UPP6 strongly support the hypothesis that horses with the Cyst phenotype are heterozygous for the mutant allele and that horses with the MCOA phenotype are homozygous for the mutant allele.


Subject(s)
Chromosome Mapping , Chromosomes, Mammalian/genetics , Eye Abnormalities/veterinary , Horses/genetics , Alleles , Animals , Eye Abnormalities/genetics , Genetic Markers , Genotype , Microsatellite Repeats , Pedigree , Phenotype , Sequence Analysis, DNA
10.
BMC Genet ; 7: 46, 2006 Oct 09.
Article in English | MEDLINE | ID: mdl-17029645

ABSTRACT

BACKGROUND: The Silver coat color, also called Silver dapple, in the horse is characterized by dilution of the black pigment in the hair. This phenotype shows an autosomal dominant inheritance. The effect of the mutation is most visible in the long hairs of the mane and tail, which are diluted to a mixture of white and gray hairs. Herein we describe the identification of the responsible gene and a missense mutation associated with the Silver phenotype. RESULTS: Segregation data on the Silver locus (Z) were obtained within one half-sib family that consisted of a heterozygous Silver colored stallion with 34 offspring and their 29 non-Silver dams. We typed 41 genetic markers well spread over the horse genome, including one single microsatellite marker (TKY284) close to the candidate gene PMEL17 on horse chromosome 6 (ECA6q23). Significant linkage was found between the Silver phenotype and TKY284 (theta = 0, z = 9.0). DNA sequencing of PMEL17 in Silver and non-Silver horses revealed a missense mutation in exon 11 changing the second amino acid in the cytoplasmic region from arginine to cysteine (Arg618Cys). This mutation showed complete association with the Silver phenotype across multiple horse breeds, and was not found among non-Silver horses with one clear exception; a chestnut colored individual that had several Silver offspring when mated to different non-Silver stallions also carried the exon 11 mutation. In total, 64 Silver horses from six breeds and 85 non-Silver horses from 14 breeds were tested for the exon 11 mutation. One additional mutation located in intron 9, only 759 bases from the missense mutation, also showed complete association with the Silver phenotype. However, as one could expect to find several non-causative mutations completely associated with the Silver mutation, we argue that the missense mutation is more likely to be causative. CONCLUSION: The present study shows that PMEL17 causes the Silver coat color in the horse and enable genetic testing for this trait.


Subject(s)
Hair Color/genetics , Horses/genetics , Membrane Glycoproteins/genetics , Mutation, Missense/genetics , Skin Pigmentation/genetics , Amino Acid Sequence , Animals , Chromosome Mapping , Chromosomes, Mammalian/genetics , Cloning, Molecular , Female , Genotype , Male , Molecular Sequence Data , Phenotype , Polymorphism, Genetic/genetics , Sequence Analysis, DNA , Sequence Homology, Amino Acid , gp100 Melanoma Antigen
11.
Nat Genet ; 36(4): 335-6, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15034578

ABSTRACT

Genetic studies using mitochondrial DNA (mtDNA) have identified extensive matrilinear diversity among domestic horses. Here, we show that this high degree of polymorphism is not matched by a corresponding patrilinear diversity of the male-specific Y chromosome. In fact, a screening for single-nucleotide polymorphisms (SNPs) in 14.3 kb of noncoding Y chromosome sequence among 52 male horses of 15 different breeds did not identify a single segregation site. These observations are consistent with a strong sex-bias in the domestication process, with few stallions contributing genetically to the domestic horse.


Subject(s)
Horses/genetics , Animals , Female , Genetic Markers , Y Chromosome
SELECTION OF CITATIONS
SEARCH DETAIL