Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 133(12)2023 06 15.
Article in English | MEDLINE | ID: mdl-37104042

ABSTRACT

Seizures are a frequent complication of adult-type diffuse gliomas, and are often difficult to control with medications. Gliomas with mutations in isocitrate dehydrogenase 1 or 2 (IDHmut) are more likely than IDH-wild type (IDHwt) gliomas to cause seizures as part of their initial clinical presentation. However, whether IDHmut is also associated with seizures during the remaining disease course, and whether IDHmut inhibitors can reduce seizure risk, are unclear. Clinical multivariable analyses showed that preoperative seizures, glioma location, extent of resection, and glioma molecular subtype (including IDHmut status) all contributed to postoperative seizure risk in adult-type diffuse glioma patients, and that postoperative seizures were often associated with tumor recurrence. Experimentally, the metabolic product of IDHmut, d-2-hydroxyglutarate, rapidly synchronized neuronal spike firing in a seizure-like manner, but only when non-neoplastic glial cells were present. In vitro and in vivo models recapitulated IDHmut glioma-associated seizures, and IDHmut inhibitors currently being evaluated in glioma clinical trials inhibited seizures in those models, independent of their effects on glioma growth. These data show that postoperative seizure risk in adult-type diffuse gliomas varies in large part by molecular subtype, and that IDHmut inhibitors could play a key role in mitigating such risk in IDHmut glioma patients.


Subject(s)
Brain Neoplasms , Glioma , Adult , Humans , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Neoplasm Recurrence, Local , Glioma/drug therapy , Glioma/genetics , Glioma/pathology , Seizures/drug therapy , Seizures/genetics , Disease Progression , Isocitrate Dehydrogenase/genetics , Mutation
2.
Cell Mol Gastroenterol Hepatol ; 15(5): 1147-1160, 2023.
Article in English | MEDLINE | ID: mdl-36738860

ABSTRACT

Several liver diseases (eg, hepatitis B/C viruses, alcoholic/nonalcoholic fatty liver, malaria, monogenic diseases, and drug-induced liver injury) significantly impact global mortality and morbidity. Species-specific differences in liver functions limit the use of animals to fully elucidate/predict human outcomes; therefore, in vitro human liver models are used for basic and translational research to complement animal studies. However, primary human liver cells are in short supply and display donor-to-donor variability in viability/quality. In contrast, human hepatocyte-like cells (HLCs) differentiated from induced pluripotent stem cells and embryonic stem cells are a near infinite cell resource that retains the patient/donor's genetic background; however, conventional protocols yield immature phenotypes. HLC maturation can be significantly improved using advanced techniques, such as protein micropatterning to precisely control cell-cell interactions, controlled sized spheroids, organoids with multiple cell types and layers, 3-dimensional bioprinting to spatially control cell populations, microfluidic devices for automated nutrient exchange and to induce liver zonation via soluble factor gradients, and synthetic biology to genetically modify the HLCs to accelerate and enhance maturation. Here, we present design features and characterization for representative advanced HLC maturation platforms and then discuss HLC use for modeling various liver diseases. Lastly, we discuss desirable advances to move this field forward. We anticipate that with continued advances in this space, pluripotent stem cell-derived liver models will provide human-relevant data much earlier in preclinical drug development and reduce animal usage, help elucidate liver disease mechanisms for the discovery of efficacious and safe therapeutics, and be useful as cell-based therapies for patients suffering from end-stage liver failure.


Subject(s)
Hepatocytes , Liver Diseases , Pluripotent Stem Cells , Tissue Engineering , Humans
3.
Sci Adv ; 7(12)2021 03.
Article in English | MEDLINE | ID: mdl-33731359

ABSTRACT

Three-dimensional (3D), submillimeter-scale constructs of neural cells, known as cortical spheroids, are of rapidly growing importance in biological research because these systems reproduce complex features of the brain in vitro. Despite their great potential for studies of neurodevelopment and neurological disease modeling, 3D living objects cannot be studied easily using conventional approaches to neuromodulation, sensing, and manipulation. Here, we introduce classes of microfabricated 3D frameworks as compliant, multifunctional neural interfaces to spheroids and to assembloids. Electrical, optical, chemical, and thermal interfaces to cortical spheroids demonstrate some of the capabilities. Complex architectures and high-resolution features highlight the design versatility. Detailed studies of the spreading of coordinated bursting events across the surface of an isolated cortical spheroid and of the cascade of processes associated with formation and regrowth of bridging tissues across a pair of such spheroids represent two of the many opportunities in basic neuroscience research enabled by these platforms.


Subject(s)
Nervous System , Neurons
4.
J Neurosci Methods ; 312: 154-161, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30529411

ABSTRACT

BACKGROUND: Unbiased screening studies have repeatedly identified actin-related proteins as one of the families of proteins most influenced by neurotrauma. Nevertheless, the status quo model of cytoskeletal reorganization after neurotrauma excludes actin and incorporates only changes in microtubules and intermediate filaments. Actin is excluded in part because it is difficult to image with conventional techniques. However, recent innovations in fluorescent microscopy provide an opportunity to image the actin cytoskeleton at super-resolution resolution in living cells. This study applied these innovations to an in vitro model of neurotrauma. NEW METHOD: New methods are introduced for traumatizing neurons before imaging them with high speed structured illumination microscopy or lattice light sheet microscopy. Also, methods for analyzing structured illumination microscopy images to quantify post-traumatic neurite dystrophy are presented. RESULTS: Human induced pluripotent stem cell-derived neurons exhibited actin organization typical of immature neurons. Neurite dystrophy increased after trauma but was not influenced by jasplakinolide treatment. The F-actin content of dystrophies varied greatly from one dystrophy to another. COMPARISON WITH EXISTING METHODS: In contrast to fixation dependent methods, these methods capture the evolution of the actin cytoskeleton over time in a living cell. In contrast to prior methods based on counting dystrophies, this quantification scheme parameterizes the severity of a given dystrophy as it evolves from a local swelling to an almost-perfect spheroid that threatens to transect the neurite. CONCLUSIONS: These methods can be used to investigate genetic factors and therapeutic interventions that modulate the course of neurite dystrophy after trauma.


Subject(s)
Brain Injuries/diagnostic imaging , Microscopy, Fluorescence/instrumentation , Microscopy, Fluorescence/methods , Neurites/pathology , Neurons/pathology , Actin Cytoskeleton/pathology , Brain Injuries/pathology , Humans , Induced Pluripotent Stem Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...