Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(17)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36080244

ABSTRACT

Catalase mimics are low molecular weight metal complexes that reproduce the activity of catalase, an antioxidant metalloprotein that participates in the cellular regulation of H2O2 concentration by catalyzing its dismutation. H2O2 is a reactive oxygen species that is vital for the normal functioning of cells. However, its overproduction contributes to oxidative stress, which damages cells. Owing to their biocompatibility, peptidyl complexes are an attractive option for clinical applications to regulate H2O2 by enzyme mimics. We report here the synthesis and characterization of four new peptidyl di-copper complexes bearing two coordinating sequences. Characterization of the complexes showed that, depending on the linker used between the two coordinating sequences, their catalytic activity for H2O2 dismutation, their thermodynamic stability and their resistance to H2O2 degradation are very different, with (CATm2)Cu2 being the most promising catalyst.


Subject(s)
Copper , Hydrogen Peroxide , Antioxidants , Catalase/metabolism , Hydrogen Peroxide/metabolism , Thermodynamics
2.
Inorg Chem ; 60(13): 9309-9319, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34109781

ABSTRACT

Catalases (CAT) are antioxidant metalloenzymes necessary for life in oxygen-metabolizing cells to regulate H2O2 concentration by accelerating its dismutation. Many physiopathological situations are associated with oxidative stress resulting from H2O2 overproduction, during which antioxidant defenses are overwhelmed. We have used a combinatorial approach associated with an activity-based screening to discover a first peptidyl di-copper complex mimicking CAT. The complex was studied in detail and characterized for its CAT activity both in solutions and in cells using different analytical methods. The complex exhibited CAT activity in solutions and, more interestingly, on HyPer HeLa cells that possess a genetically encoded ratiometric fluorescent sensors of H2O2. These results highlight the efficiency of a combinatorial approach for the discovery of peptidyl complexes that exhibit catalytic activity.


Subject(s)
Antioxidants/metabolism , Catalase/metabolism , Copper/metabolism , Metalloproteins/metabolism , Peptides/metabolism , Antioxidants/chemistry , Catalase/chemistry , Copper/chemistry , HeLa Cells , Humans , Hydrogen Peroxide/metabolism , Metalloproteins/chemistry , Peptides/chemistry , Tumor Cells, Cultured
3.
Chem Commun (Camb) ; 56(3): 399-402, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31820751

ABSTRACT

A combinatorial approach using a one-bead-one-compound method and a screening based on a SOD-activity assay was set up for the discovery of an efficient peptidyl copper complex. The complex exhibited good stability constants, suitable redox potentials and excellent intrinsic activity. This complex was further assayed in cells for its antioxidant properties and showed beneficial effects when cells were subjected to oxidative stress.


Subject(s)
Biocompatible Materials/metabolism , Copper/chemistry , Peptides/chemistry , Amino Acid Sequence , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Colon/cytology , Colon/drug effects , Colon/metabolism , Copper/metabolism , HT29 Cells , Humans , Interleukin-8/metabolism , Lipopolysaccharides/toxicity , Oxidative Stress/drug effects , Peptides/metabolism , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL