Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Infect Immun ; 91(10): e0026823, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37754682

ABSTRACT

In this study, we investigated how different categories of prenatal malaria exposure (PME) influence levels of maternal antibodies in cord blood samples and the subsequent risk of malaria in early childhood in a birth cohort study (N = 661) nested within the COSMIC clinical trial (NCT01941264) in Burkina Faso. Plasmodium falciparum infections during pregnancy and infants' clinical malaria episodes detected during the first year of life were recorded. The levels of maternal IgG and IgG1-4 to 15 P. falciparum antigens were measured in cord blood by quantitative suspension array technology. Results showed a significant variation in the magnitude of maternal antibody levels in cord blood, depending on the PME category, with past placental malaria (PM) more frequently associated with significant increases of IgG and/or subclass levels across three groups of antigens defined as pre-erythrocytic, erythrocytic, and markers of PM, as compared to those from the cord of non-exposed control infants. High levels of antibodies to certain erythrocytic antigens (i.e., IgG to EBA140 and EBA175, IgG1 to EBA175 and MSP142, and IgG3 to EBA140 and MSP5) were independent predictors of protection from clinical malaria during the first year of life. By contrast, high levels of IgG, IgG1, and IgG2 to the VAR2CSA DBL1-2 and IgG4 to DBL3-4 were significantly associated with an increased risk of clinical malaria. These findings indicate that PME categories have different effects on the levels of maternal-derived antibodies to malaria antigens in children at birth, and this might drive heterogeneity to clinical malaria susceptibility in early childhood.


Subject(s)
Malaria, Falciparum , Malaria , Child , Infant , Infant, Newborn , Humans , Child, Preschool , Female , Pregnancy , Plasmodium falciparum , Cohort Studies , Burkina Faso/epidemiology , Maternal Exposure , Placenta , Antibodies, Protozoan , Malaria/epidemiology , Immunoglobulin G , Antigens, Protozoan
3.
J Parasit Dis ; 47(2): 280-289, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37193494

ABSTRACT

In this study, we evaluated the performance of a P. falciparum Histidine Rich Protein 2 (PfHRP2)-based rapid diagnostic test (RDT) used for malaria case detection (SD-Bioline malaria RDT P.f®) along with light microscopy (LM) against qPCR among children during the first year of life in a high and seasonal malaria transmission area in Burkina Faso. A total of 723 suspected malaria cases (including multiple episodes) that occurred among 414 children participating in a birth-cohort study were included in the present analysis. Factors including age at the time of malaria screening, transmission season and parasite densities were investigated for their potential influence in the performance of the RDT. Clinical malaria cases as detected by RDT, LM and qPCR were 63.8%, 41.5% and 49.8%, respectively. Compared with qPCR, RDT had a false-positive results rate of 26.7%, resulting in an overall accuracy of 79.9% with a sensitivity of 93%, a specificity of 66.1%, a Positive Predictive Value of 73.3% and a Negative Predictive Value of 91.6%. Its specificity differed significantly between high and low transmission seasons (53.7% vs 79.8%; P < 0.001) and decreased with increasing age (80.6-62%; P for trend = 0.024). The overall accuracy of LM was 91.1% and its performance was not significantly influenced by transmission season or age. These findings highlight the need to adapt malaria diagnostic tools recommendations to face the challenge of adequate malaria detection in this population group living in high burden and seasonal malaria transmission settings.

4.
Malar J ; 19(1): 399, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33172485

ABSTRACT

BACKGROUND: Single nucleotide polymorphisms occurring in the Plasmodium falciparum multidrug resistant gene 1 (pfmdr1) are known to be associated with aminoquinoline resistance and, therefore, represent key P. falciparum markers for monitoring resistance both in susceptible groups (children under 5 years old and pregnant women) and in the general population. This study aimed to determine prevalence and factors associated with the carriage of pfmdr1 N86Y, Y184F and D1246Y polymorphisms among pregnant women in a setting of high malaria transmission in Burkina Faso. METHODS: Plasmodium falciparum isolates were collected at the first antenatal care visit (ANC-1) as well as at delivery from pregnant women participating in the COSMIC trial (NTC01941264), which assessed malaria preventive interventions during pregnancy in the Nanoro Health District. Here, pregnant women received intermittent preventive treatment with sulfadoxine-pyrimethamine (IPTp-SP) and malaria infections and/or diseases were treated using artemether-lumefantrine (AL) during the trial. Parasite DNA was extracted from dried blood spots and the presence of pfmdr1 mutations at positions 86, 184 and 1246 was determined using nested PCR, followed by restriction fragment length polymorphism (RFLP) analysis. RESULTS: A prevalence of 13.2% (20/151) and 12.1% (14/116) of the pfmdr1 86Y mutant allele was found at ANC-1 and at delivery, respectively, while no mutant allele was observed for Y184F and D1246Y codons at both ANC-1 and at delivery. There were no significant factors associated with pfmdr1 86Y mutant allele carriage at ANC-1. However, malaria infections at delivery with a parasite density above the median (2237.2 (IQR: 613.5-11,425.7) parasites/µl) was associated with an increase risk of pfmdr1 86Y mutant allele carriage (AOR = 5.5 (95% CI 1.07-28.0); P = 0.04). In contrast, both three or more IPTp-SP doses (AOR = 0.25 (95% CI 0.07-0.92); P = 0.04) and one or more AL treatment (AOR = 0.25 (95% CI 0.07-0.89); P = 0.03) during pregnancy were associated with a significant reduce risk of pfmdr1 86Y mutant allele carriage at delivery. CONCLUSION: These findings suggest that both high coverage of IPTp-SP and the use of AL for the treatment of malaria infection/disease during pregnancy select for pfmdr1 N86 wild-type allele at delivery.


Subject(s)
Artemether, Lumefantrine Drug Combination/therapeutic use , Carrier State/parasitology , Malaria, Falciparum/epidemiology , Multidrug Resistance-Associated Proteins/genetics , Plasmodium falciparum/physiology , Polymorphism, Genetic , Pyrimethamine/therapeutic use , Sulfadoxine/therapeutic use , Adolescent , Adult , Burkina Faso/epidemiology , Drug Combinations , Female , Humans , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Pregnancy , Prevalence , Risk Factors , Young Adult
5.
BMC Med ; 16(1): 198, 2018 11 02.
Article in English | MEDLINE | ID: mdl-30384846

ABSTRACT

BACKGROUND: Factors driving inter-individual differences in immune responses upon different types of prenatal malaria exposure (PME) and subsequent risk of malaria in infancy remain poorly understood. In this study, we examined the impact of four types of PME (i.e., maternal peripheral infection and placental acute, chronic, and past infections) on both spontaneous and toll-like receptors (TLRs)-mediated cytokine production in cord blood and how these innate immune responses modulate the risk of malaria during the first year of life. METHODS: We conducted a birth cohort study of 313 mother-child pairs nested within the COSMIC clinical trial (NCT01941264), which was assessing malaria preventive interventions during pregnancy in Burkina Faso. Malaria infections during pregnancy and infants' clinical malaria episodes detected during the first year of life were recorded. Supernatant concentrations of 30 cytokines, chemokines, and growth factors induced by stimulation of cord blood with agonists of TLRs 3, 7/8, and 9 were measured by quantitative suspension array technology. Crude concentrations and ratios of TLR-mediated cytokine responses relative to background control were analyzed. RESULTS: Spontaneous production of innate immune biomarkers was significantly reduced in cord blood of infants exposed to malaria, with variation among PME groups, as compared to those from the non-exposed control group. However, following TLR7/8 stimulation, which showed higher induction of cytokines/chemokines/growth factors than TLRs 3 and 9, cord blood cells of infants with evidence of past placental malaria were hyper-responsive in comparison to those of infants not-exposed. In addition, certain biomarkers, which levels were significantly modified depending on the PME category, were independent predictors of either malaria risk (GM-CSF TLR7/8 crude) or protection (IL-12 TLR7/8 ratio and IP-10 TLR3 crude, IL-1RA TLR7/8 ratio) during the first year of life. CONCLUSIONS: These findings indicate that past placental malaria has a profound effect on fetal immune system and that the differential alterations of innate immune responses by PME categories might drive heterogeneity between individuals to clinical malaria susceptibility during the first year of life.


Subject(s)
Immunity, Innate/immunology , Malaria, Falciparum/diagnosis , Toll-Like Receptors/immunology , Adult , Cohort Studies , Female , Humans , Malaria, Falciparum/immunology , Male , Pregnancy , Prospective Studies
6.
Malar J ; 17(1): 163, 2018 Apr 12.
Article in English | MEDLINE | ID: mdl-29650007

ABSTRACT

BACKGROUND: Infants are thought to be protected against malaria during the first months of life mainly due to passage of maternal antibodies. However, in high transmission settings, malaria in early infancy is not uncommon and susceptibility to the infections varies between individuals. This study aimed to determine malaria morbidity and infection during early childhood in rural Burkina Faso. METHODS: Malariometric indices were determined over 1-year follow-up in a birth cohort of 734 infants living in Nanoro health district. Clinical malaria episodes were determined by passive case detection at peripheral health centres while asymptomatic malaria infections were identified during  4 cross-sectional surveys at 3, 6, 9 and 12 months of age. Plasmodium falciparum infections were detected by rapid diagnostic test and/or light microscopy (LM) and quantitative PCR (qPCR). RESULTS: In total, 717 clinical episodes were diagnosed by qPCR over 8335.18 person-months at risk. The overall malaria incidence was 1.03 per child-year and increased from 0.27 per child-year at 0-3 months of age to 1.92 per child-year at 9-12 months of age. Some 59% of children experienced at least one clinical episode with a median survival time estimated at 9.9 months, while 20% of infants experienced the first episode before 6 months of age. The majority of the clinical episodes were attributable to microscopic parasitaemia (84.2%), and there was a positive correlation between parasite density and age (Spearman's rho = 0.30; P < 0.0001). Prevalence of asymptomatic infections was similar at 3, 6 and 9 months of age (17.7-20.1%) and nearly 1.6 times higher at 12 months (31.3%). Importantly, gametocyte prevalence among the LM-positive study population was 6.7%, but increased to 10% among asymptomatic infections. In addition, 46% of asymptomatic infections were only detected by qPCR suggesting that infants below 1 year are a potential reservoir for sustaining malaria transmission. Both symptomatic and asymptomatic infections showed marked seasonal distribution with the highest transmission period (July to December) accounting for about 89 and 77% of those infections, respectively. CONCLUSIONS: These findings indicate high and marked age and seasonal-dependency of malaria infections and disease during the first year of life in Nanoro, calling for intensified efforts to control malaria in rural Burkina Faso.


Subject(s)
Asymptomatic Infections/epidemiology , Malaria, Falciparum/epidemiology , Age Factors , Burkina Faso/epidemiology , Cohort Studies , Cross-Sectional Studies , Diagnostic Tests, Routine , Disease Susceptibility/epidemiology , Disease Susceptibility/parasitology , Humans , Incidence , Infant , Infant, Newborn , Longitudinal Studies , Malaria, Falciparum/parasitology , Microscopy , Morbidity , Polymerase Chain Reaction , Prevalence
7.
Sci Rep ; 7(1): 2080, 2017 05 18.
Article in English | MEDLINE | ID: mdl-28522856

ABSTRACT

Congenital malaria diagnosis is challenging due to frequently observed low parasite density infections, while their clinical relevance during early infancy is not well characterized. In Nanoro health district (Burkina Faso), we determined the prevalence of congenital malaria by real-time quantitative PCR and we assessed the performance of rapid diagnosis test (RDT) and light microscopy (LM) to detect Plasmodium falciparum infections in cord-blood samples. In addition, we examined the usefulness of P. falciparum Histidine Rich Protein2 (PfHRP2) as surrogate biomarker of infection and explored association between congenital malaria and clinical outcomes. A prevalence of congenital malaria by qPCR of 4% (16/400) was found, which increased to 10% among newborns from mothers infected at delivery. RDT and LM showed poor performances indicating limited utility for congenital malaria screening in cord blood. Because PfHRP2 detection in cord blood could be affected by transplacental passage of parasite antigens, PfHRP2 might not be used as a surrogate biomarker of congenital malaria infections. There was no evidence of a significant clinical impact of congenital malaria on infant's health from birth to 59 days of life. Case control studies including long-term follow up may provide additional understanding on the relevance of neonatal malaria infections.


Subject(s)
Antigens, Protozoan/genetics , Infectious Disease Transmission, Vertical , Malaria/blood , Molecular Diagnostic Techniques/methods , Protozoan Proteins/genetics , Adult , Female , Fetal Blood/parasitology , Humans , Infant , Infant, Newborn , Malaria/congenital , Malaria/transmission , Male , Molecular Diagnostic Techniques/standards , Plasmodium falciparum/genetics , Plasmodium falciparum/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...