Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Total Environ ; 858(Pt 1): 159735, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36349630

ABSTRACT

Man's impacts on global ecosystems are increasing and there is a growing demand that these activities be appropriately monitored. Monitoring requires measurement of a response metric ('signal') that changes maximally and consistently in response to the monitored activity irrespective of other factors ('noise'), thus maximising the signal-to-noise ratio. Indices derived from time-consuming morphology-based taxonomic identification of organisms are a core part of many monitoring programmes. Metabarcoding is an alternative to morphology-based identification and involves the sequencing of short fragments of DNA ('markers') from multiple taxa simultaneously. DNA suitable for metabarcoding includes that extracted from environmental samples (eDNA). Metabarcoding outputs DNA sequences that can be identified (annotated) by matching them against archived annotated sequences. However, sequences from most organisms are not archived - preventing annotation and potentially limiting metabarcoding in monitoring applications. Consequently, there is growing interest in using unannotated sequences as response metrics in monitoring programmes. We compared the sequences from three commonly used markers (16S (V3/V4 regions), 18S (V1/V2 regions) and COI) and, sampling along steep impact gradients, showed that the 16S and COI sequences were associated with the largest and smallest signal-to-noise ratio respectively. We trialled four separate, intuitive, noise-reduction approaches and demonstrated that removing less frequent sequences improved the signal-to-noise ratio, partitioning an additional 25 % from noise to explanatory factors in non-parametric ANOVA (NPA) and reducing dispersion in the data. For the 16S marker, retaining only the most frequently observed sequence, per sample, resulting in nine sequences across 150 samples, generated a near-maximal signal-to-noise ratio (95 % of the variance explained in NPA). We recommend that NPA, combined with rigorous elimination of less frequent sequences, be used to pre-filter sequences/taxa being used in monitoring applications. Our approach will simplify downstream analysis, for example the identification of key taxa and functional associations.


Subject(s)
DNA, Environmental , Humans , DNA Barcoding, Taxonomic , Ecosystem , Signal-To-Noise Ratio , Environmental Monitoring/methods , DNA/genetics , Biodiversity
2.
PLoS One ; 11(10): e0164327, 2016.
Article in English | MEDLINE | ID: mdl-27723810

ABSTRACT

Understanding the habitat use patterns of migratory fish, such as Atlantic salmon (Salmo salar L.), and the natural and anthropogenic impacts on them, is aided by the ability to identify individuals to their stock of origin. Presented here are the results of an analysis of informative single nucleotide polymorphic (SNP) markers for detecting genetic structuring in Atlantic salmon in Scotland and NE England and their ability to allow accurate genetic stock identification. 3,787 fish from 147 sites covering 27 rivers were screened at 5,568 SNP markers. In order to identify a cost-effective subset of SNPs, they were ranked according to their ability to differentiate between fish from different rivers. A panel of 288 SNPs was used to examine both individual assignments and mixed stock fisheries and eighteen assignment units were defined. The results improved greatly on previously available methods and, for the first time, fish caught in the marine environment can be confidently assigned to geographically coherent units within Scotland and NE England, including individual rivers. As such, this SNP panel has the potential to aid understanding of the various influences acting upon Atlantic salmon on their marine migrations, be they natural environmental variations and/or anthropogenic impacts, such as mixed stock fisheries and interactions with marine power generation installations.


Subject(s)
Polymorphism, Single Nucleotide , Salmo salar/genetics , Animals , England , Rivers , Scotland
3.
Mol Biol Evol ; 26(3): 579-89, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19056903

ABSTRACT

The mitochondrial DNA (mtDNA) genome figures prominently in evolutionary investigations of vertebrate animals due to a suite of characteristics that include absence of Darwinian selection, high mutation rate, and inheritance as a single linkage group. Given complete linkage and selective neutrality, mtDNA gene trees are expected to correspond to intraspecific phylogenies, and mtDNA diversity will reflect population size. The validity of these assumptions is, however, rarely tested on a genome-wide scale. Here, we analyze rates and patterns of molecular evolution among 32 whole mitochondrial genomes of Atlantic Cod (Gadus morhua) as compared with its sister taxon, the walleye pollock (Gadus [Theragra] chalcogrammus), and genomes of seven other gadine codfish. We evaluate selection within G. morhua, between sister species, and among species and intraspecific measures of linkage disequilibrium and recombination within G. morhua. Strong rate heterogeneity occurs among sites and genes at all levels of hierarchical comparison, consistent with variation in mutation rates across the genome. Neutrality indices (dN/dS) are significantly greater than unity among G. morhua genomes and between sister species, which suggests that polymorphisms within species are slightly deleterious, as expected under the nearly neutral theory of molecular evolution. Among species of gadines, dN/dS ratios are heterogeneous among genes, consistent with purifying selection and variation in functional constraint among genes rather than positive selection. The dN/dS ratio for ND4L is anomalously high across all hierarchical levels. There is no evidence for recombination within G. morhua. These patterns contrast strongly with those reported for humans: genome-wide patterns in other vertebrates should be investigated to elucidate the complex patterns of mtDNA molecular evolution.


Subject(s)
Evolution, Molecular , Gadus morhua/genetics , Genome, Mitochondrial/genetics , Animals , Gadiformes/genetics , Kinetics , Linkage Disequilibrium , Recombination, Genetic
4.
Genome ; 49(9): 1115-30, 2006 Sep.
Article in English | MEDLINE | ID: mdl-17110992

ABSTRACT

Phylogenetic analysis of 13 substantially complete mitochondrial DNA genome sequences (14,036 bp) from 10 taxa of gadine codfishes and pollock provides highly corroborated resolution of outstanding questions on their biogeographic evolution. Of 6 resolvable nodes among species, 4 were supported by >95% of bootstrap replications in parsimony, distance, likelihood, and similarly high posterior probabilities in bayesian analyses, one by 85%-95% according to the method of analysis, and one by 99% by one method and a majority of the other two. The endemic Pacific species, walleye pollock (Theragra chalcogramma), is more closely related to the endemic Atlantic species, Atlantic cod (Gadus macrocephalus), than either is to a second Pacific endemic, Pacific cod (Gadus macrocephalus). The walleye pollock should thus be referred to the genus Gadus as originally described (Gadus chalcogrammus Pallas 1811). Arcto-Atlantic Greenland cod, previously regarded as a distinct species (G. ogac), are a genomically distinguishable subspecies within pan-Pacific G. macrocephalus. Of the 2 endemic Arctic Ocean genera, Polar cod (Boreogadus) as the outgroup to Arctic cod (Arctogadus) and Gadus sensu lato is more strongly supported than a pairing of Boreogadus and Arctogadus as sister taxa. Taking into consideration historical patterns of hydrogeography, we outline a hypothesis of the origin of the 2 endemic Pacific species as independent but simultaneous invasions through the Bering Strait from an Arcto-Atlantic ancestral lineage. In contrast to the genome data, the complete proteome sequence (3830 amino acids) resolved only 3 nodes with >95% confidence, and placed Alaska pollock outside the Gadus clade owing to reversal mutations in the ND5 locus that restore ancestral, non-Gadus, amino acid residues in that species.


Subject(s)
DNA, Mitochondrial/genetics , Gadiformes/classification , Gadiformes/genetics , Phylogeny , Amino Acid Sequence , Animals , Base Sequence , Genomics , Geography , Molecular Sequence Data , Oceans and Seas , Proteomics , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL