Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Discov ; 13(6): 1364-1385, 2023 06 02.
Article in English | MEDLINE | ID: mdl-36977461

ABSTRACT

Understanding the evolutionary pathways to metastasis and resistance to immune-checkpoint inhibitors (ICI) in melanoma is critical for improving outcomes. Here, we present the most comprehensive intrapatient metastatic melanoma dataset assembled to date as part of the Posthumous Evaluation of Advanced Cancer Environment (PEACE) research autopsy program, including 222 exome sequencing, 493 panel-sequenced, 161 RNA sequencing, and 22 single-cell whole-genome sequencing samples from 14 ICI-treated patients. We observed frequent whole-genome doubling and widespread loss of heterozygosity, often involving antigen-presentation machinery. We found KIT extrachromosomal DNA may have contributed to the lack of response to KIT inhibitors of a KIT-driven melanoma. At the lesion-level, MYC amplifications were enriched in ICI nonresponders. Single-cell sequencing revealed polyclonal seeding of metastases originating from clones with different ploidy in one patient. Finally, we observed that brain metastases that diverged early in molecular evolution emerge late in disease. Overall, our study illustrates the diverse evolutionary landscape of advanced melanoma. SIGNIFICANCE: Despite treatment advances, melanoma remains a deadly disease at stage IV. Through research autopsy and dense sampling of metastases combined with extensive multiomic profiling, our study elucidates the many mechanisms that melanomas use to evade treatment and the immune system, whether through mutations, widespread copy-number alterations, or extrachromosomal DNA. See related commentary by Shain, p. 1294. This article is highlighted in the In This Issue feature, p. 1275.


Subject(s)
Brain Neoplasms , Melanoma , Humans , Melanoma/pathology , Mutation , Evolution, Molecular , DNA
2.
Cancer Cell ; 40(2): 134-135, 2022 02 14.
Article in English | MEDLINE | ID: mdl-35120602

ABSTRACT

In Cell, Nguyen et al. utilize targeted panel sequencing combined with electronic health record data to study metastasis and organotropism in a large cohort of 25,775 patients. Their genomic and clinical data have been made freely available as a resource for use by the community.


Subject(s)
Neoplasms , Cohort Studies , Genomics , Humans , Neoplasms/genetics
3.
BMC Bioinformatics ; 21(1): 311, 2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32677889

ABSTRACT

BACKGROUND: Polyploid organisms such as wheat complicate even the simplest of procedures in molecular biology. Whilst knowledge of genomic sequences in crops is increasing rapidly, the scientific community is still a long way from producing a full pan-genome for every species. Polymerase chain reaction and Sanger sequencing therefore remain widely used as methods for characterizing gene sequences in many varieties of crops. High sequence similarity between genomes in polyploids means that if primers are not homeologue-specific via the incorporation of a SNP at the 3' tail, sequences other than the target sequence will also be amplified. Current consensus for gene cloning in wheat is to manually perform many steps in a long bioinformatics pipeline. RESULTS: Here we present AutoCloner ( www.autocloner.com ), a fully automated pipeline for crop gene cloning that includes a free-to-use web interface for users. AutoCloner takes a sequence of interest from the user and performs a basic local alignment search tool (BLAST) search against the genome assembly for their particular polyploid crop. Homologous sequences are then compiled with the input sequence into a multiple sequence alignment which is mined for single-nucleotide polymorphisms (SNPs). Various combinations of potential primers that cover the entire gene of interest are then created and evaluated by Primer3; the set of primers with the highest score, as well as all possible primers at every SNP location, are then returned to the user for polymerase chain reaction (PCR). We have successfully used AutoCloner to clone various genes of interest in the Apogee wheat variety, which has no current genome sequence. In addition, we have successfully run the pipeline on ~ 80,000 high-confidence gene models from a wheat genome assembly. CONCLUSION: AutoCloner is the first tool to fully-automate primer design for gene cloning in polyploids, where previously the consensus within the wheat community was to perform this process manually. The web interface for AutoCloner provides a simple and effective polyploid primer-design method for gene cloning, with no need for researchers to download software or input any other details other than their sequence of interest.


Subject(s)
Cloning, Molecular , Computational Biology/methods , DNA Primers/metabolism , Polyploidy , Sequence Homology , Software , Triticum/genetics , Amino Acid Substitution/genetics , Base Sequence , DNA Primers/genetics , Polymerase Chain Reaction/methods , Polymorphism, Single Nucleotide/genetics
4.
Front Plant Sci ; 11: 230, 2020.
Article in English | MEDLINE | ID: mdl-32218791

ABSTRACT

Meiotic recombination plays a crucial role in the generation of new varieties. The effectiveness of recombination is limited by the distribution of crossover events, which in wheat and many other crops is skewed toward the distal regions of the chromosomes. Whole-genome sequencing of wheat has revealed that there are numerous important genes in the pericentromeric regions, which are inaccessible to manipulation due to the lack of crossover events. Studies in barley have shown that the distribution of recombination events can be shifted toward the centromeres by increasing temperature during meiosis. Here we present an analysis of the effects of temperature on the distribution and frequency of recombination events in wheat. Our data show that although increased temperature during meiosis does cause an inward shift in recombination distribution for some chromosomes, its overall utility is limited, with many genes remaining highly linked.

5.
PLoS One ; 15(2): e0228951, 2020.
Article in English | MEDLINE | ID: mdl-32074141

ABSTRACT

Segregation distortion is the phenomenon in which genotypes deviate from expected Mendelian ratios in the progeny of a cross between two varieties or species. There is not currently a widely used consensus for the appropriate statistical test, or more specifically the multiple testing correction procedure, used to detect segregation distortion for high-density single-nucleotide polymorphism (SNP) data. Here we examine the efficacy of various multiple testing procedures, including chi-square test with no correction for multiple testing, false-discovery rate correction and Bonferroni correction using an in-silico simulation of a biparental mapping population. We find that the false discovery rate correction best approximates the traditional p-value threshold of 0.05 for high-density marker data. We also utilize this simulation to test the effect of segregation distortion on the genetic mapping process, specifically on the formation of linkage groups during marker clustering. Only extreme segregation distortion was found to effect genetic mapping. In addition, we utilize replicate empirical mapping populations of wheat varieties Avalon and Cadenza to assess how often segregation distortion conforms to the same pattern between closely related wheat varieties.


Subject(s)
Chromosome Mapping/methods , Chromosome Mapping/statistics & numerical data , Chromosome Segregation/physiology , Chromosomes, Plant/genetics , Computer Simulation , Data Interpretation, Statistical , Genetic Linkage/genetics , Genotype , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Triticum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...