Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cell Mol Life Sci ; 81(1): 14, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38191696

ABSTRACT

Sigma-1 receptor (S1R) is a calcium-sensitive, ligand-operated receptor chaperone present on the endoplasmic reticulum (ER) membrane. S1R plays an important role in ER-mitochondrial inter-organelle calcium signaling and cell survival. S1R and its agonists confer resilience against various neurodegenerative diseases; however, the molecular mechanism of S1R is not yet fully understood. At resting state, S1R is either in a monomeric or oligomeric state but the ratio of these concentrations seems to change upon activation of S1R. S1R is activated by either cellular stress, such as ER-calcium depletion, or ligands. While the effect of ligands on S1R quaternary structure remains unclear, the effect of cellular stress has not been studied. In this study we utilize cellular and an in-vivo model to study changes in quaternary structure of S1R upon activation. We incubated cells with cellular stressors (H2O2 and thapsigargin) or exogenous ligands, then quantified monomeric and oligomeric forms. We observed that benzomorphan-based S1R agonists induce monomerization of S1R and decrease oligomerization, which was confirmed in the liver tissue of mice injected with (+)-Pentazocine. Antagonists block this effect but do not induce any changes when used alone. Oxidative stress (H2O2) increases the monomeric/oligomeric S1R ratio whereas ER calcium depletion (thapsigargin) has no effect. We also analyzed the oligomerization ability of various truncated S1R fragments and identified the fragments favorizing oligomerization. In this publication we demonstrate that quaternary structural changes differ according to the mechanism of S1R activation. Therefore, we offer a novel perspective on S1R activation as a nuanced phenomenon dependent on the type of stimulus.


Subject(s)
Benzomorphans , Calcium , Animals , Mice , Hydrogen Peroxide , Sigma-1 Receptor , Thapsigargin , Calcium Signaling
2.
Int J Mol Sci ; 24(9)2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37175473

ABSTRACT

The sigma-1 receptor (SIGMAR1) is one of a kind: a receptor chaperone protein. This 223 amino acid-long protein is enriched at the mitochondria-associated endoplasmic reticulum membrane (MAM), a specialized microdomain of the endoplasmic reticulum that is structurally and functionally connected to the mitochondria. As a receptor, SIGMAR1 binds a wide spectrum of ligands. Numerous molecules targeting SIGMAR1 are currently in pre-clinical or clinical development. Interestingly, the range of pathologies covered by these studies is broad, especially with regard to neurodegenerative disorders. Upon activation, SIGMAR1 can translocate and interact with other proteins, mostly at the MAM but also in other organelles, which allows SIGMAR1 to affect many cellular functions. During these interactions, SIGMAR1 exhibits chaperone protein behavior by participating in the folding and stabilization of its partner. In this short communication, we will shed light on how SIGMAR1 confers protection against neurodegeneration to the cells of the nervous system and why this ability makes SIGMAR1 a multifunctional therapeutic prospect.


Subject(s)
Neurodegenerative Diseases , Receptors, sigma , Humans , Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , Neurodegenerative Diseases/metabolism , Receptors, sigma/metabolism , Sigma-1 Receptor
3.
Sci Transl Med ; 14(631): eabh3763, 2022 02 09.
Article in English | MEDLINE | ID: mdl-35138910

ABSTRACT

The Wolfram syndrome is a rare autosomal recessive disease affecting many organs with life-threatening consequences; currently, no treatment is available. The disease is caused by mutations in the WSF1 gene, coding for the protein wolframin, an endoplasmic reticulum (ER) transmembrane protein involved in contacts between ER and mitochondria termed as mitochondria-associated ER membranes (MAMs). Inherited mutations usually reduce the protein's stability, altering its homeostasis and ultimately reducing ER to mitochondria calcium ion transfer, leading to mitochondrial dysfunction and cell death. In this study, we found that activation of the sigma-1 receptor (S1R), an ER-resident protein involved in calcium ion transfer, could counteract the functional alterations of MAMs due to wolframin deficiency. The S1R agonist PRE-084 restored calcium ion transfer and mitochondrial respiration in vitro, corrected the associated increased autophagy and mitophagy, and was able to alleviate the behavioral symptoms observed in zebrafish and mouse models of the disease. Our findings provide a potential therapeutic strategy for treating Wolfram syndrome by efficiently boosting MAM function using the ligand-operated S1R chaperone. Moreover, such strategy might also be relevant for other degenerative and mitochondrial diseases involving MAM dysfunction.


Subject(s)
Receptors, sigma , Wolfram Syndrome , Animals , Calcium/metabolism , Female , Humans , Male , Mice , Receptors, sigma/agonists , Zebrafish/metabolism , Sigma-1 Receptor
4.
Cell Mol Neurobiol ; 42(3): 597-620, 2022 Apr.
Article in English | MEDLINE | ID: mdl-33095392

ABSTRACT

Sigma-1 receptor (Sig-1R) is a protein present in several organs such as brain, lung, and heart. In a cell, Sig-1R is mainly located across the membranes of the endoplasmic reticulum and more specifically at the mitochondria-associated membranes. Despite numerous studies showing that Sig-1R could be targeted to rescue several cellular mechanisms in different pathological conditions, less is known about its fundamental relevance. In this review, we report results from various studies and focus on the importance of Sig-1R in physiological conditions by comparing Sig-1R KO mice to wild-type mice in order to investigate the fundamental functions of Sig-1R. We note that the Sig-1R deletion induces cognitive, psychiatric, and motor dysfunctions, but also alters metabolism of heart. Finally, taken together, observations from different experiments demonstrate that those dysfunctions are correlated to poor regulation of ER and mitochondria metabolism altered by stress, which could occur with aging.


Subject(s)
Receptors, sigma , Animals , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Mice , Mitochondria/metabolism , Receptors, sigma/genetics , Receptors, sigma/metabolism , Sigma-1 Receptor
5.
Neuropharmacology ; 186: 108467, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33516737

ABSTRACT

Huntington's disease (HD) is due to a mutation in the gene encoding for Huntingtin protein generating polyQ domain extension. Mutant Htt (mHtt) leads to important dysfunction of the BDNF/TrkB signaling. We previously described the 23aa Htt fragment P42, that attenuated the pathological phenotypes induced by mHtt. We reported that, in the R6/2 mouse model of HD, P42 rescued striatal TrkB level but marginally increased cortical BDNF. In the present study, our aim was to address P42 neuroprotection in presence of an external input of BDNF. We combined P42 administration with environmental enrichment (EE), induced by training in the Hamlet test. We examined the consequences of P42 + EE combination on different phenotypes in R6/2 HD mice: motor and cognitive performances, recorded at early and late pathological stages, and analyzed aggregated mHtt and BDNF levels in forebrain structures. Hamlet exploration (i.e., entries in Run, Hide, Eat, Drink and Interact houses) was gradually impaired in R6/2 mice, but maintained by P42 treatment until week 8. Topographic memory alteration measured at week 7 was attenuated by P42. Motor performances (rotarod) were significantly ameliorated by the P42 + EE combination until late stage (week 12). The P42 + EE combination also significantly decreased aggregated Htt levels in the hippocampus, striatum and cortex, and increased BDNF levels in the cortex and striatum. We concluded that combination between P42 treatment, known to increase TrkB striatal expression, and a BDNF-enhancing therapy such as EE efficiently delayed HD pathology in R6/2 mice. Use of dual therapies might be a pertinent strategy to fight neurodegeneration in HD.


Subject(s)
Environment , Huntingtin Protein , Huntington Disease/drug therapy , Huntington Disease/physiopathology , Peptide Fragments/administration & dosage , Amino Acid Sequence , Animals , Combined Modality Therapy/methods , Female , Huntingtin Protein/genetics , Huntington Disease/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Transgenic , Peptide Fragments/genetics , Psychomotor Performance/drug effects , Psychomotor Performance/physiology , Treatment Outcome
6.
Int J Neuropsychopharmacol ; 24(2): 142-157, 2021 02 15.
Article in English | MEDLINE | ID: mdl-32977336

ABSTRACT

BACKGROUND: Current therapies in Alzheimer's disease (AD), including Memantine, have proven to be only symptomatic but not curative or disease modifying. Fluoroethylnormemantine (FENM) is a structural analogue of Memantine, functionalized with a fluorine group that allowed its use as a positron emission tomography tracer. We here analyzed FENM neuroprotective potential in a pharmacological model of AD compared with Memantine. METHODS: Swiss mice were treated intracerebroventricularly with aggregated Aß 25-35 peptide and examined after 1 week in a battery of memory tests (spontaneous alternation, passive avoidance, object recognition, place learning in the water-maze, topographic memory in the Hamlet). Toxicity induced in the mouse hippocampus or cortex was analyzed biochemically or morphologically. RESULTS: Both Memantine and FENM showed symptomatic anti-amnesic effects in Aß 25-35-treated mice. Interestingly, FENM was not amnesic when tested alone at 10 mg/kg, contrarily to Memantine. Drugs injected once per day prevented Aß 25-35-induced memory deficits, oxidative stress (lipid peroxidation, cytochrome c release), inflammation (interleukin-6, tumor necrosis factor-α increases; glial fibrillary acidic protein and Iba1 immunoreactivity in the hippocampus and cortex), and apoptosis and cell loss (Bcl-2-associated X/B-cell lymphoma 2 ratio; cell loss in the hippocampus CA1 area). However, FENM effects were more robust than observed with Memantine, with significant attenuations vs the Aß 25-35-treated group. CONCLUSIONS: FENM therefore appeared as a potent neuroprotective drug in an AD model, with a superior efficacy compared with Memantine and an absence of direct amnesic effect at higher doses. These results open the possibility to use the compound at more relevant dosages than those actually proposed in Memantine treatment for AD.


Subject(s)
Alzheimer Disease/drug therapy , Amnesia/drug therapy , Memantine/analogs & derivatives , Memantine/pharmacology , Memory Disorders/drug therapy , Neuroprotective Agents/pharmacology , Alzheimer Disease/chemically induced , Alzheimer Disease/prevention & control , Amnesia/chemically induced , Amnesia/prevention & control , Amyloid beta-Peptides/pharmacology , Animals , Behavior, Animal/drug effects , Disease Models, Animal , Male , Memantine/administration & dosage , Memory Disorders/chemically induced , Mice , Mice, Inbred C57BL , Neuroprotective Agents/administration & dosage , Peptide Fragments/pharmacology
7.
Eur Neuropsychopharmacol ; 39: 29-45, 2020 10.
Article in English | MEDLINE | ID: mdl-32893057

ABSTRACT

The sigma-1 receptor (S1R) is a membrane-associated protein expressed in neurons and glia at mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs). S1R interacts with different partners to regulate cellular responses, including ER stress, mitochondrial physiology and Ca2+ fluxes. S1R shapes cellular plasticity by directly modulating signaling pathways involved in inflammatory responses, cell survival and death. We here analyzed its impact on brain plasticity in vivo, in mice trained in a complex maze, the Hamlet test. The device, providing strong enriched environment (EE) conditions, mimics a small village. It has a central agora and streets expanding from it, leading to functionalized houses where animals can Drink, Eat, Hide, Run, or Interact. Animals were trained in groups, 4 h/day for two weeks, and their maze exploration and topographic memory could be analyzed. Several groups of mice were considered: non-trained vs. trained; repeatedly administered with saline vs. NE-100, a selective S1R antagonist; and wildtype vs. S1R KO mice. S1R inactivation altered maze exploration and prevented topographic learning. EE induced a strong plasticity measured through resilience to behavioral despair or to the amnesic effects of scopolamine, and increases in S1R expression and bdnf mRNA levels in the hippocampus; increases in neurogenesis (proliferation and maturation); and increases of histone acetylation in the hippocampus and cortex. S1R inactivation altered all these parameters significantly, showing that S1R activity plays a major role in physiological brain plasticity. As S1R is a major resident protein in MAMs, modulating ER responses and mitochondrial homeostasy, MAM physiology appeared impacted by enriched environment.


Subject(s)
Environment , Neuronal Plasticity/physiology , Receptors, sigma/metabolism , Animals , Anisoles/pharmacology , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Morpholines/pharmacology , Neuronal Plasticity/drug effects , Propylamines/pharmacology , Receptors, sigma/agonists , Receptors, sigma/antagonists & inhibitors , Sigma-1 Receptor
8.
Hum Mol Genet ; 29(4): 529-540, 2020 03 13.
Article in English | MEDLINE | ID: mdl-31696229

ABSTRACT

Sigma-1 receptor (S1R) is an endoplasmic reticulum (ER) chaperone that not only regulates mitochondrial respiration but also controls cellular defense against ER and oxidative stress. This makes S1R a potential therapeutic target in amyotrophic lateral sclerosis (ALS). Especially, as a missense mutation E102Q in S1R has been reported in few familial ALS cases. However, the pathogenicity of S1RE102Q and the beneficial impact of S1R in the ALS context remain to be demonstrated in vivo. To address this, we generated transgenic Drosophila that expresses human wild-type S1R or S1RE102Q. Expression of mutant S1R in fly neurons induces abnormal eye morphology and locomotor defects in a dose-dependent manner. This was accompanied by abnormal mitochondrial fragmentation, reduced adenosine triphosphate (ATP) levels and a higher fatigability at the neuromuscular junction during high energy demand. Overexpressing IP3 receptor or glucose transporter mitigates the S1RE102Q-induced eye phenotype, further highlighting the role of calcium and energy metabolism in its toxicity. More importantly, we showed that wild-type S1R rescues locomotor activity and ATP levels of flies expressing the key ALS protein, TDP43. Moreover, overexpressing wild-type S1R enhances resistance of flies to oxidative stress. Therefore, our data provide the first genetic evidence that mutant S1R recapitulates ALS pathology in vivo while increasing S1R confers neuroprotection against TDP43 toxicity.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Receptors, sigma/genetics , Receptors, sigma/metabolism , Animals , Animals, Genetically Modified/genetics , Disease Models, Animal , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Endoplasmic Reticulum/metabolism , Locomotion/drug effects , Mitochondria/metabolism , Motor Neurons/metabolism , Mutation/drug effects , Neuroprotective Agents/pharmacology , Sigma-1 Receptor
9.
Hum Mol Genet ; 28(20): 3391-3405, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31363758

ABSTRACT

Reversible detyrosination of tubulin, the building block of microtubules, is crucial for neuronal physiology. Enzymes responsible for detyrosination were recently identified as complexes of vasohibins (VASHs) one or two with small VASH-binding protein (SVBP). Here we report three consanguineous families, each containing multiple individuals with biallelic inactivation of SVBP caused by truncating variants (p.Q28* and p.K13Nfs*18). Affected individuals show brain abnormalities with microcephaly, intellectual disability and delayed gross motor and speech development. Immunoblot testing in cells with pathogenic SVBP variants demonstrated that the encoded proteins were unstable and non-functional, resulting in a complete loss of VASH detyrosination activity. Svbp knockout mice exhibit drastic accumulation of tyrosinated tubulin and a reduction of detyrosinated tubulin in brain tissue. Similar alterations in tubulin tyrosination levels were observed in cultured neurons and associated with defects in axonal differentiation and architecture. Morphological analysis of the Svbp knockout mouse brains by anatomical magnetic resonance imaging showed a broad impact of SVBP loss, with a 7% brain volume decrease, numerous structural defects and a 30% reduction of some white matter tracts. Svbp knockout mice display behavioural defects, including mild hyperactivity, lower anxiety and impaired social behaviour. They do not, however, show prominent memory defects. Thus, SVBP-deficient mice recapitulate several features observed in human patients. Altogether, our data demonstrate that deleterious variants in SVBP cause this neurodevelopmental pathology, by leading to a major change in brain tubulin tyrosination and alteration of microtubule dynamics and neuron physiology.


Subject(s)
Brain/abnormalities , Brain/metabolism , Cell Cycle Proteins/metabolism , Neurons/metabolism , Tubulin/metabolism , Animals , Carrier Proteins/metabolism , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Female , Humans , Immunoblotting , Magnetic Resonance Imaging , Mice , Microcephaly/genetics , Microcephaly/metabolism , Tyrosine/metabolism
10.
Hum Mol Genet ; 27(17): 3012-3028, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29860423

ABSTRACT

Huntington's disease (HD) is caused by a mutation in the Huntingtin (HTT) protein. We previously reported that the 23aa peptide of HTT protein, P42, is preventing HD pathological phenotypes, such as aggregation, reduction of motor performances and neurodegeneration. A systemic treatment with P42 during the pre-symptomatic phase of the disease showed therapeutic potential in R6/2 mice. We here tested P42 effects when administered during the post-symptomatic phase. The P42 treatment alleviated deficits in motor performances, even when symptoms have already started. Because changes in the level and activity of brain-derived neurotrophic factor (BDNF) have been shown to play a central role in HD, we analysed the influence of P42 on BDNF deficit and associated phenotypes. Our data suggest that P42 is involved in the spatio-temporal control of bdnf and trkB mRNA and their protein levels. Related to this enhancement of BDNF-TrkB signalling, R6/2 mice treated with P42, exhibit reduced anxiety, better learning and memory performances, and better long-term potentiation (LTP) response. Finally we identified a direct influence of P42 peptide on neuronal plasticity and activity. These results suggest that P42 offers an efficient therapeutic potential not only by preventing aggregation of mutant HTT at early stages of the disease, but also by favouring some physiological functions of normal HTT, as P42 is naturally part of it, at the different stages of the disease. This makes P42 peptide potentially suitable not only to prevent, but also to treat HD.


Subject(s)
Anxiety/drug therapy , Brain-Derived Neurotrophic Factor/metabolism , Huntingtin Protein/metabolism , Huntington Disease/drug therapy , Memory/drug effects , Peptide Fragments/pharmacology , Animals , Anxiety/metabolism , Anxiety/pathology , Brain-Derived Neurotrophic Factor/genetics , Female , Humans , Huntington Disease/metabolism , Huntington Disease/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Transgenic , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...