Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(17): 22326-22333, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38635965

ABSTRACT

Low-temperature large-area growth of two-dimensional (2D) transition-metal dichalcogenides (TMDs) is critical for their integration with silicon chips. Especially, if the growth temperatures can be lowered below the back-end-of-line (BEOL) processing temperatures, the Si transistors can interface with 2D devices (in the back end) to enable high-density heterogeneous circuits. Such configurations are particularly useful for neuromorphic computing applications where a dense network of neurons interacts to compute the output. In this work, we present low-temperature synthesis (400 °C) of 2D tungsten diselenide (WSe2) via the selenization of the W film under ultrahigh vacuum (UHV) conditions. This simple yet effective process yields large-area, homogeneous films of 2D TMDs, as confirmed by several characterization techniques, including reflection high-energy electron diffraction, atomic force microscopy, transmission electron microscopy, and different spectroscopy methods. Memristors fabricated using the grown WSe2 film are leveraged to realize a novel compact neuron circuit that can be reconfigured to enable homeostasis.

2.
ACS Nano ; 17(20): 19600-19612, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37791789

ABSTRACT

Moiré superlattices in graphene arise from rotational twists in stacked 2D layers, leading to specific band structures, charge density and interlayer electron and excitonic interactions. The periodicities in bilayer graphene moiré lattices are given by a simple moiré basis vector that describes periodic oscillations in atomic density. The addition of a third layer to form trilayer graphene generates a moiré lattice comprised of multiple harmonics that do not occur in bilayer systems, leading to nontrivial crystal symmetries. Here, we use atomic resolution 4D-scanning transmission electron microscopy to study atomic structure in bilayer and trilayer graphene moiré superlattices and use 4D-STEM to map the electric fields to show subtle variations in the long-range moiré patterns. We show that monolayer graphene folded into an S-bend graphene pleat produces trilayer moiré superlattices with both small (<2°) and larger twist angles (7-30°). Annular in-plane electric field concentrations are detected in high angle bilayers due to overlapping rotated graphene hexagons in each layer. The presence of a third low angle twisted layer in S-bend trilayer graphene, introduces a long-range modulation of the atomic structure so that no real space unit cell is detected. By directly imaging trilayer moiré harmonics that span from picoscale to nanoscale using 4D-STEM, we gain insights into the complex spatial distributions of atomic density and electric fields in trilayer twisted layered materials.

3.
Nano Lett ; 23(15): 6807-6814, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37487233

ABSTRACT

Defects in crystalline lattices cause modulation of the atomic density, and this leads to variations in the associated electrostatics at the nanoscale. Mapping these spatially varying charge fluctuations using transmission electron microscopy has typically been challenging due to complicated contrast transfer inherent to conventional phase contrast imaging. To overcome this, we used four-dimensional scanning transmission electron microscopy (4D-STEM) to measure electrostatic fields near point dislocations in a monolayer. The asymmetry of the atomic density in a (1,0) edge dislocation core in graphene yields a local enhancement of the electric field in part of the dislocation core. Through experiment and simulation, the increased electric field magnitude is shown to arise from "long-range" interactions from beyond the nearest atomic neighbor. These results provide insights into the use of 4D-STEM to quantify electrostatics in thin materials and map out the lateral potential variations that are important for molecular and atomic bonding through Coulombic interactions.

4.
Nano Lett ; 23(7): 2952-2957, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36996390

ABSTRACT

Threshold switches based on conductive metal bridge devices are useful as selectors to block sneak leakage paths in memristor arrays used in neuromorphic computing and emerging nonvolatile memory. We demonstrate that control of Ag-cation concentration in Al2O3 electrolyte and Ag filament size and density play an important role in the high on/off ratio and self-compliance of metal-ion-based volatile threshold switching devices. To control Ag-cation diffusion, we inserted an engineered defective graphene monolayer between the Ag electrode and the Al2O3 electrolyte. The Ag-cation migration and the Ag filament size and density are limited by the pores in the defective graphene monolayer. This leads to quantized conductance in the Ag filaments and self-compliance resulting from the formation and dissolution of the Ag conductive filament.

5.
Adv Mater ; 34(43): e2205403, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36043938

ABSTRACT

Artificially introduced small twist angles at the interfaces of vertical layered heterostructures (VLHs) have allowed deterministic tuning of electronic and optical properties such as strongly correlated electronic phases and Moiré excitons. But creating a Moiré twist in van der Waals (vdWs) systems by manual stacking is challenging in reproducibility, uniformity, and accuracy of the twist angle, which hinders future studies. Here, it is demonstrated that contrary to the commonly believed 0°-orientation in vdWs epitaxy, these VLHs show small twist angles controlled by the low-order commensurate phase with low energy and local atomic relaxation. A commensurate multilevel map is proposed to predict possible orientations. Remarkably, high-mismatch VLHs show discrete and sometimes non-zero twist angles dependent on their natural mismatch value. Such framework is experimentally confirmed in five epitaxially grown VLHs under high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), and can provide significant insights for large-scale engineering of twist angle in VLHs.

SELECTION OF CITATIONS
SEARCH DETAIL
...