Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Water Res ; 217: 118396, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35413563

ABSTRACT

In intermittent rivers, which represent a prominent part of worldwide rivers, aquatic organisms are exposed to sequential disturbances including flow cessation, potentially associated with water warming, desiccation process and flow resumption. At flow resumption, pollutants stored in soil and washed by rainfalls can reach fresh waters. The interaction between contamination and river intermittency is poorly understood. In this study, we aimed at understanding in what extent the intensity of dry period combined or not to water warming drives the sensitivity of aquatic communities to a complex agricultural run-off (ARO) during rewetting. Phototrophic biofilms, at the basis of freshwater food webs, were chosen as a model of community. Biofilms grown in laboratory were first exposed to a disturbance crossing two temperature conditions (not warmed, 22°C or warmed, 32°C) and three dry periods (no drying, short (3 days), or long (3 months)). Then they were exposed to a chemical mix of nitrates, copper and 3 pesticides at 6 gradual concentrations. Various descriptors associated with biofilm structure and function were assessed one week after ARO addition. When undisturbed biofilms were exposed to ARO, they shifted toward a more heterotrophic state as they lost algal richness and diversity, and gross primary production tended to decrease. Warming alone only slightly modified the sensitivity of biofilms to ARO, with lower effects on algal richness and a trend to increase the effect on gross primary production. In contrast, the association of warming and a dry period strongly modified the sensitivity to ARO, certainly due to the selection of generalist species and/or physiological acclimation inducted by the first disturbance. This study emphasizes the importance of considering water intermittency in the management of the ecological risk of chemicals in aquatic ecosystems.


Subject(s)
Microbiota , Water Pollutants, Chemical , Agriculture , Biofilms , Droughts , Microbiota/physiology , Rivers , Water/pharmacology , Water Pollutants, Chemical/pharmacology
2.
Water Res ; 190: 116713, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33302039

ABSTRACT

Aquatic ecosystems are exposed to multiple stressors such as agricultural run-off (ARO) and climate-change related increase of temperature. We aimed to determine how ARO and the frequency of its input can affect shallow lake ecosystems through direct and indirect effects on primary producers and primary consumers, and whether warming can mitigate or reinforce the impact of ARO. We performed a set of microcosm experiments simulating ARO using a cocktail of three organic pesticides (terbuthylazine, tebuconazole, pirimicarb), copper and nitrate. Two experiments were performed to determine the direct effect of ARO on primary producers (submerged macrophytes, periphyton and phytoplankton) and on the grazing snail Lymnaea stagnalis, respectively. Three different ARO concentrations added as single doses or as multiple pulses at two different temperatures (22°C and 26°C) were applied. In a third experiment, primary producers and consumers were exposed together to allow trophic interactions. When functional groups were exposed alone, ARO had a direct positive effect on phytoplankton and a strong negative effect on L. stagnalis. When exposed together, primary producer responses were contrasting, as the negative effect of ARO on grazers led to an indirect positive effect on periphyton. Periphyton in turn exerted a strong control on phytoplankton, leading to an indirect negative effect of ARO on phytoplankton. Macrophytes showed little response to the stressors. Multiple pulse exposure increased the effect of ARO on L. stagnalis and periphyton when compared with the same quantity of ARO added as a single dose. The increase in temperature had only limited effects. Our results highlight the importance of indirect effects of stressors, here mediated by grazers and periphyton, and the frequency of the ARO input in aquatic ecosystems.


Subject(s)
Ecosystem , Global Warming , Agriculture , Animals , Lakes , Phytoplankton
SELECTION OF CITATIONS
SEARCH DETAIL