Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Cancer ; 13: 134, 2013 Mar 20.
Article in English | MEDLINE | ID: mdl-23514281

ABSTRACT

BACKGROUND: The p53 protein is expressed as multiple isoforms that differ in their N- and C-terminus due to alternative splicing, promoter or codon initiation usage. Δ40p53 lacks the first 39 residues containing the main transcriptional activation domain, resulting from initiation of translation at AUG +40 in fully spliced p53 mRNA or in a specific variant mRNA retaining intron 2. Overexpression of Δ40p53 antagonizes wild-type p53 in vitro. However, animal models of Δ40p53 in mouse or Zebrafish have shown complex phenotypes suggestive of p53-dependent growth suppressive effects. METHODS: We have co-transfected expression vectors for p53 and Δ40p53 in p53-null cell lines Saos-2 and H1299 to show that Δ40p53 forms mixed oligomers with p53 that bind to DNA and modulate the transcription of a generic p53-dependent reporter gene. RESULTS: In H1299 cells, co-expression of the two proteins induced a decrease in transcription with amplitude that depended upon the predicted composition of the hetero-tetramer. In Saos-2, a paradoxical effect was observed, with a small increase in activity for hetero-tetramers predicted to contain 1 or 2 monomers of Δ40p53 and a decrease at higher Δ40p53/p53 ratios. In this cell line, co-transfection of Δ40p53 prevented Hdm2-mediated degradation of p53. CONCLUSION: Δ40p53 modulates transcriptional activity by interfering with the binding of Hdm2 to hetero-tetramers containing both Δ40p53 and p53. These results provide a basis for growth suppressive effects in animal models co-expressing roughly similar levels of p53 and Δ40p53.


Subject(s)
Trans-Activators , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Alternative Splicing , Animals , Cell Line, Tumor , Humans , Mice , Protein Binding , Protein Isoforms , Protein Multimerization , Protein Stability , Proteolysis , Proto-Oncogene Proteins c-mdm2/metabolism , RNA, Messenger , Transcriptional Activation
2.
PLoS Genet ; 8(5): e1002723, 2012.
Article in English | MEDLINE | ID: mdl-22654675

ABSTRACT

The epithelial-mesenchymal transition (EMT) is an embryonic transdifferentiation process consisting of conversion of polarized epithelial cells to motile mesenchymal ones. EMT-inducing transcription factors are aberrantly expressed in multiple tumor types and are known to favor the metastatic dissemination process. Supporting oncogenic activity within primary lesions, the TWIST and ZEB proteins can prevent cells from undergoing oncogene-induced senescence and apoptosis by abolishing both p53- and RB-dependent pathways. Here we show that they also downregulate PP2A phosphatase activity and efficiently cooperate with an oncogenic version of H-RAS in malignant transformation of human mammary epithelial cells. Thus, by down-regulating crucial tumor suppressor functions, EMT inducers make cells particularly prone to malignant conversion. Importantly, by analyzing transformed cells generated in vitro and by characterizing novel transgenic mouse models, we further demonstrate that cooperation between an EMT inducer and an active form of RAS is sufficient to trigger transformation of mammary epithelial cells into malignant cells exhibiting all the characteristic features of claudin-low tumors, including low expression of tight and adherens junction genes, EMT traits, and stem cell-like characteristics. Claudin-low tumors are believed to be the most primitive breast malignancies, having arisen through transformation of an early epithelial precursor with inherent stemness properties and metaplastic features. Challenging this prevailing view, we propose that these aggressive tumors arise from cells committed to luminal differentiation, through a process driven by EMT inducers and combining malignant transformation and transdifferentiation.


Subject(s)
Breast Neoplasms , Cell Transformation, Neoplastic , Claudins , Epithelial-Mesenchymal Transition , Mammary Glands, Human/metabolism , Protein Phosphatase 2 , Twist-Related Protein 1/genetics , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Differentiation , Cell Line , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Claudins/genetics , Claudins/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic , Genes, ras , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Mammary Glands, Animal/cytology , Mammary Glands, Animal/metabolism , Mammary Glands, Human/cytology , Mice , Mice, Transgenic , Protein Phosphatase 2/antagonists & inhibitors , Protein Phosphatase 2/metabolism , Retinoblastoma Protein/metabolism , Telomerase/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Suppressor Protein p53/metabolism , Twist-Related Protein 1/metabolism , Zinc Finger E-box-Binding Homeobox 1
3.
Semin Cancer Biol ; 21(6): 392-6, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21986518

ABSTRACT

The epithelial to mesenchymal transition (EMT) is a latent embryonic process which can be aberrantly reactivated during tumor progression. It is generally viewed as one of the main forces driving metastatic dissemination, by providing cells with invasive and motility capabilities. The aberrant reactivation of embryonic EMT inducers has now been additionally linked to escape from senescence and apoptosis, which suggests a role in tumor initiation. This oncogenic potential relies on the ability of EMT inducers to neutralize both the RB and p53 oncosuppressive pathways. RB and p53 have recently been described as key factors in the maintenance of epithelial morphology, which suggests an unexpected and intimate crosstalk between EMT and the corresponding safety programs. In this review, we attempt to understand how these two cell processes are interlinked and might facilitate cell transformation and tumor initiation.


Subject(s)
Epithelial-Mesenchymal Transition , Tumor Escape , Disease Progression , Humans , Neoplasms/pathology
4.
Cancer Cell ; 10(6): 459-72, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17157787

ABSTRACT

Oncogene-induced senescence functions to limit tumor development. However, a complete understanding of the signals that trigger this type of senescence is currently lacking. We found that mutations affecting NF1, Raf, and Ras induce a global negative feedback response that potently suppresses Ras and/or its effectors. Moreover, these signals promote senescence by inhibiting the Ras/PI3K pathway, which can impact the senescence machinery through HDM2 and FOXO. This negative feedback program is regulated in part by RasGEFs, Sprouty proteins, RasGAPs, and MKPs. Moreover, these signals function in vivo in benign human tumors. Thus, the ultimate response to the aberrant activation of the Ras pathway is a multifaceted negative feedback signaling network that terminates the oncogenic signal and participates in the senescence response.


Subject(s)
Cellular Senescence , Genes, ras/physiology , Signal Transduction/physiology , Animals , Cells, Cultured , Feedback , Genes, Neurofibromatosis 1/physiology , Genes, Retinoblastoma/physiology , Genes, p53/physiology , Humans , Mice , Neoplasms/genetics , Neoplasms/pathology , Phosphatidylinositol 3-Kinases/physiology , Stem Cells/pathology , raf Kinases/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...