Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 15744, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36130980

ABSTRACT

A wide variety of 18F-labeled PSMA-targeting PET radiotracers have been developed, including [18F]AlF-PSMA-11. As there is only limited data on the comparison with other 18F-labeled PSMA PET tracers, a comparative preclinical study between [18F]AlF-PSMA-11 and [18F]PSMA-1007 was conducted. Mice with varying PSMA expressing tumors (C4-2, 22Rv1 and PC-3, each n = 5) underwent two PET/CT scans with both [18F]AlF-PSMA-11 and [18F]PSMA-1007. Ten additional mice bearing C4-2 xenografts were subjected to ex vivo biodistribution with either [18F]AlF-PSMA-11 (n = 5) or [18F]PSMA-1007 (n = 5). Absolute SUVmean and SUVmax values were significantly higher for [18F]PSMA-1007 scans in both C4-2 tumors (p < 0.01) and 22Rv1 tumors (p < 0.01). In C4-2 xenograft bearing mice, the tumor-to-organ ratios did not significantly differ between [18F]AlF-PSMA-11 and [18F]PSMA-1007 for liver, muscle, blood and salivary glands (p > 0.05). However, in 22Rv1 xenograft bearing mice, all tumor-to-organ ratios were higher for [18F]AlF-PSMA-11 (p < 0.01). In healthy organs, [18F]PSMA-1007 uptake was higher in the liver, gallbladder, small intestines and glands. Biodistribution data confirmed the increased uptake in the heart, small intestines and liver with [18F]PSMA-1007. Absolute tumor uptake was higher with [18F]PSMA-1007 in all tumors. Tumor-to-organ ratios did not differ significantly in high PSMA expressing tumors, but were higher for [18F]AlF-PSMA-11 in low PSMA expressing tumors. Furthermore, [18F]PSMA-1007 showed higher uptake in healthy organs.


Subject(s)
Positron Emission Tomography Computed Tomography , Radiopharmaceuticals , Animals , Humans , Mice , Niacinamide/analogs & derivatives , Oligopeptides , Positron-Emission Tomography , Tissue Distribution
2.
Front Vet Sci ; 9: 800158, 2022.
Article in English | MEDLINE | ID: mdl-35280129

ABSTRACT

Background: Repetitive transcranial magnetic stimulation (rTMS) has been proven to be a useful tool for the treatment of several severe neuropsychiatric disorders. Accelerated (a)rTMS protocols may have the potential to result in faster clinical improvements, but the effects of such accelerated paradigms on brain function remain to be elucidated. Objectives: This sham-controlled arTMS study aimed to evaluate the immediate and delayed effects of accelerated high frequency rTMS (aHF-rTMS) on glucose metabolism in healthy beagle dogs when applied over the left frontal cortex. Methods: Twenty-four dogs were randomly divided into four unequal groups: five active (n = 8)/ sham (n = 4) stimulation sessions (five sessions in 1 day), 20 active (n = 8)/ sham (n = 4) stimulation sessions (five sessions/ day for 4 days), respectively. [18F] FDG PET scans were obtained at baseline, 24 h poststimulation, after 1 and 3 months post the last stimulation session. We explicitly focused on four predefined regions of interest (left/right prefrontal cortex and left/right hippocampus). Results: One day of active aHF-rTMS- and not sham- significantly increased glucose metabolism 24 h post-active stimulation in the left frontal cortex only. Four days of active aHF-rTMS only resulted in a nearly significant metabolic decrease in the left hippocampus after 1 month. Conclusions: Like in human psychiatric disorders, active aHF-rTMS in healthy beagles modifies glucose metabolism, although differently immediately or after 1 month post stimulation. aHF-rTMS may be also a valid option to treat mentally disordered dogs.

3.
Front Plant Sci ; 12: 602550, 2021.
Article in English | MEDLINE | ID: mdl-34149742

ABSTRACT

Due to its high sensitivity and specificity for tumor detection, positron emission tomography (PET) has become a standard and widely used molecular imaging technique. Given the popularity of PET, both clinically and preclinically, its use has been extended to study plants. However, only a limited number of research groups worldwide report PET-based studies, while we believe that this technique has much more potential and could contribute extensively to plant science. The limited application of PET may be related to the complexity of putting together methodological developments from multiple disciplines, such as radio-pharmacology, physics, mathematics and engineering, which may form an obstacle for some research groups. By means of this manuscript, we want to encourage researchers to study plants using PET. The main goal is to provide a clear description on how to design and execute PET scans, process the resulting data and fully explore its potential by quantification via compartmental modeling. The different steps that need to be taken will be discussed as well as the related challenges. Hereby, the main focus will be on, although not limited to, tracing 11CO2 to study plant carbon dynamics.

4.
Tree Physiol ; 40(8): 1058-1070, 2020 07 30.
Article in English | MEDLINE | ID: mdl-32333788

ABSTRACT

Respired CO2 in woody tissues can build up in the xylem and dissolve in the sap solution to be transported through the plant. From the sap, a fraction of the CO2 can either be radially diffuse to the atmosphere or be assimilated in chloroplasts present in woody tissues. These processes occur simultaneously in stems and branches, making it difficult to study their specific dynamics. Therefore, an 11C-enriched aqueous solution was administered to young branches of Populus tremula L., which were subsequently imaged by positron emission tomography (PET). This approach allows in vivo visualization of the internal movement of CO2 inside branches at high spatial and temporal resolution, and enables direct measurement of the transport speed of xylem-transported CO2 (vCO2). Through compartmental modeling of the dynamic data obtained from the PET images, we (i) quantified vCO2 and (ii) proposed a new method to assess the fate of xylem-transported 11CO2 within the branches. It was found that a fraction of 0.49 min-1 of CO2 present in the xylem was transported upwards. A fraction of 0.38 min-1 diffused radially from the sap to the surrounding parenchyma and apoplastic spaces (CO2,PA) to be assimilated by woody tissue photosynthesis. Another 0.12 min-1 of the xylem-transported CO2 diffused to the atmosphere via efflux. The remaining CO2 (i.e., 0.01 min-1) was stored as CO2,PA, representing the build-up within parenchyma and apoplastic spaces to be assimilated or directed to the atmosphere. Here, we demonstrate the outstanding potential of 11CO2-based plant-PET in combination with compartmental modeling to advance our understanding of internal CO2 movement and the respiratory physiology within woody tissues.


Subject(s)
Carbon Dioxide , Populus , Photosynthesis , Plant Stems , Positron-Emission Tomography , Xylem
5.
Tree Physiol ; 39(2): 211-221, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30597097

ABSTRACT

Phloem transport is of great importance in trees to distribute assimilated carbon across the entire tree. Nevertheless, knowledge of phloem is incomplete, because of the complexity of measuring its transport and characteristics. Only few studies have addressed how phloem transport might alter under climatic changes, with most data originating from theoretical studies. We measured phloem characteristics in leaves of young Populus tremula L. trees grown during 5 months under ambient (TA, 404 ppm ± 5) and elevated (TE, 659 ppm ± 3) atmospheric CO2 concentration ([CO2]) using a combination of positron emission tomography (PET) and compartmental modelling. Short-term phloem dynamics were measured in vivo and non-invasively using the short-lived isotope of carbon, 11C (half-life 20.4 min). Trees were scanned in well-watered and dry conditions to assess changes in phloem characteristics induced by drought. Reliability of the PET-derived results was verified with reported observations in the literature. Phloem speed was highest in well-watered TE trees and strongly reduced by 81% under drought, whereas phloem speed reduced by 61% in TA trees at the same level of drought. These findings led us to speculate that phloem transport in TE trees might be more vulnerable to drought. We discuss how a higher phloem vulnerability to drought in a changing climate could impact tree hydraulic functioning. Taken together our results suggest that trees grown for 5 months under elevated [CO2] seem to be less well-acclimated to face projected hotter droughts in a changing climate.


Subject(s)
Climate Change , Droughts , Phloem/metabolism , Populus/metabolism , Trees/metabolism , Carbon/metabolism , Carbon Dioxide/metabolism , Plant Leaves/metabolism , Positron-Emission Tomography
6.
Appl Radiat Isot ; 135: 19-27, 2018 May.
Article in English | MEDLINE | ID: mdl-29353193

ABSTRACT

OBJECTIVES: We report a reproducible automated radiosynthesis for large scale batch production of clinical grade Al[18F]PSMA-11. METHODS: A SynthraFCHOL module was optimized to synthesize Al[18F]PSMA-11 by Al[18F]-chelation. Results Al[18F]PSMA-11 was synthesized within 35min in a yield of 21 ± 3% (24.0 ± 6.0GBq) and a radiochemical purity > 95%. Batches were stable for 4h and conform the European Pharmacopeia guidelines. CONCLUSIONS: The automated synthesis of Al[18F]PSMA-11 allows for large scale production and distribution of Al[18F]PSMA-11.

7.
Nucl Med Biol ; 31(5): 649-54, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15219284

ABSTRACT

Acetylhomotaurine was labeled with (11)C via N-acetylation with [(11)C]acetyl chloride. The synthesis yielded 48.2+/-3.8%, decay corrected to end of bombardment. The specific activity of the (radio)chemically pure product was 20.8+/-2.0 GBq/micromol at EOS. In vivo studies revealed a very fast clearance of the tracer from the blood and a uniform distribution in the different brain regions. Unfortunately, the poor passage through the blood brain barrier makes the tracer not suitable for PET studies.


Subject(s)
Brain/diagnostic imaging , Brain/metabolism , Positron-Emission Tomography/methods , Taurine/analogs & derivatives , Taurine/pharmacology , Taurine/pharmacokinetics , Acamprosate , Alcohol Deterrents/pharmacology , Alcoholism/drug therapy , Animals , Brain/drug effects , Carbon Radioisotopes/chemistry , Carbon Radioisotopes/pharmacokinetics , Humans , Isotope Labeling/methods , Male , Metabolic Clearance Rate , Mice , Rabbits , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacokinetics , Taurine/chemical synthesis , Tissue Distribution , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...