Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Malar J ; 22(1): 195, 2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37355627

ABSTRACT

BACKGROUND: Ethiopia has a history of climate related malaria epidemics. An improved understanding of malaria-climate interactions is needed to inform malaria control and national adaptation plans. METHODS: Malaria-climate associations in Ethiopia were assessed using (a) monthly climate data (1981-2016) from the Ethiopian National Meteorological Agency (NMA), (b) sea surface temperatures (SSTs) from the eastern Pacific, Indian Ocean and Tropical Atlantic and (c) historical malaria epidemic information obtained from the literature. Data analysed spanned 1950-2016. Individual analyses were undertaken over relevant time periods. The impact of the El Niño Southern Oscillation (ENSO) on seasonal and spatial patterns of rainfall and minimum temperature (Tmin) and maximum temperature (Tmax) was explored using NMA online Maprooms. The relationship of historic malaria epidemics (local or widespread) and concurrent ENSO phases (El Niño, Neutral, La Niña) and climate conditions (including drought) was explored in various ways. The relationships between SSTs (ENSO, Indian Ocean Dipole and Tropical Atlantic), rainfall, Tmin, Tmax and malaria epidemics in Amhara region were also explored. RESULTS: El Niño events are strongly related to higher Tmax across the country, drought in north-west Ethiopia during the July-August-September (JAS) rainy season and unusually heavy rain in the semi-arid south-east during the October-November-December (OND) season. La Niña conditions approximate the reverse. At the national level malaria epidemics mostly occur following the JAS rainy season and widespread epidemics are commonly associated with El Niño events when Tmax is high, and drought is common. In the Amhara region, malaria epidemics were not associated with ENSO, but with warm Tropical Atlantic SSTs and higher rainfall. CONCLUSION: Malaria-climate relationships in Ethiopia are complex, unravelling them requires good climate and malaria data (as well as data on potential confounders) and an understanding of the regional and local climate system. The development of climate informed early warning systems must, therefore, target a specific region and season when predictability is high and where the climate drivers of malaria are sufficiently well understood. An El Niño event is likely in the coming years. Warming temperatures, political instability in some regions, and declining investments from international donors, implies an increasing risk of climate-related malaria epidemics.


Subject(s)
Epidemics , Malaria , Humans , El Nino-Southern Oscillation , Ethiopia/epidemiology , Disease Outbreaks , Malaria/epidemiology
2.
Mar Drugs ; 19(10)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34677445

ABSTRACT

Sugar-based molecules such as heparins or natural heparan sulfate polysaccharides have been developed and widely studied for controlling heparanase (HPSE) enzymatic activity, a key player in extracellular matrix remodelling during cancer pathogenesis. However, non-enzymatic functions of HPSE have also been described in tumour mechanisms. Given their versatile properties, we hypothesized that sugar-based inhibitors may interfere with enzymatic but also non-enzymatic HPSE activities. In this work, we assessed the effects of an original marine λ-carrageenan derived oligosaccharide (λ-CO) we previously described, along with those of its native counterpart and heparins, on cell viability, proliferation, migration, and invasion of MDA-MB-231 breast cancer cells but also of sh-MDA-MB-231 cells, in which the expression of HPSE was selectively downregulated. We observed no cytotoxic and no anti-proliferative effects of our compounds but surprisingly λ-CO was the most efficient to reduce cell migration and invasion compared with heparins, and in a HPSE-dependent manner. We provided evidence that λ-CO tightly controlled a HPSE/MMP-14/MMP-2 axis, leading to reduced MMP-2 activity. Altogether, this study highlights λ-CO as a potent HPSE "modulator" capable of reducing not only the enzymatic activity of HPSE but also the functions controlled by the HPSE levels.


Subject(s)
Antineoplastic Agents/pharmacology , Carrageenan/pharmacology , Cell Line, Tumor/drug effects , Glucuronidase/metabolism , Rhodophyta , Animals , Antineoplastic Agents/chemistry , Aquatic Organisms , Breast Neoplasms , Carrageenan/chemistry , Cell Movement/drug effects , Female , Humans , Inhibitory Concentration 50 , Matrix Metalloproteinase 14/metabolism , Matrix Metalloproteinase 2/metabolism
3.
Environ Syst Decis ; 41(4): 594-615, 2021.
Article in English | MEDLINE | ID: mdl-34306961

ABSTRACT

The electric power grid is a critical societal resource connecting multiple infrastructural domains such as agriculture, transportation, and manufacturing. The electrical grid as an infrastructure is shaped by human activity and public policy in terms of demand and supply requirements. Further, the grid is subject to changes and stresses due to diverse factors including solar weather, climate, hydrology, and ecology. The emerging interconnected and complex network dependencies make such interactions increasingly dynamic, posing novel risks, and presenting new challenges to manage the coupled human-natural system. This paper provides a survey of models and methods that seek to explore the significant interconnected impact of the electric power grid and interdependent domains. We also provide relevant critical risk indicators (CRIs) across diverse domains that may be used to assess risks to electric grid reliability, including climate, ecology, hydrology, finance, space weather, and agriculture. We discuss the convergence of indicators from individual domains to explore possible systemic risk, i.e., holistic risk arising from cross-domain interconnections. Further, we propose a compositional approach to risk assessment that incorporates diverse domain expertise and information, data science, and computer science to identify domain-specific CRIs and their union in systemic risk indicators. Our study provides an important first step towards data-driven analysis and predictive modeling of risks in interconnected human-natural systems.

4.
Nanoscale ; 13(2): 842-861, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33351869

ABSTRACT

The positive contrast of extremely small iron oxide nanoparticles (ESIONP) in magnetic resonance imaging (MRI) rejuvenates this class of metal nanoparticles (NP).Yet, the current synthesis often lacks the possibility of adjusting the core size (while it is a key element for ESIONP-based MRI contrast behaviour), and also involved multiple complex steps before obtaining a ready-to-use probe for medical applications. In this study, we faced these challenges by applying heparin oligosaccharides (HO) of different lengths as coatings for the preparation of HEP-ESIONP with a one-pot microwave method. We demonstrated that the HO length could control the core size during the synthesis to achieve optimal positive MRI contrast, and that HEP-ESIONP were endowed directly with anticoagulant properties and/or a specific antitumor activity, according to the HO used. Relevantly, positron emission tomography (PET)-based in vivo biodistribution study conducted with 68Ga core-doped HEP-ESIONP analogues revealed significant changes in the probe behaviours, the shortening of HO promoting a shift from hepatic to renal clearance. The different conformations of HO coatings and a thorough in vitro characterisation of the probes' protein coronas provided insight into this crucial impact of HO length on opsonization-mediated immune response and elimination. Overall, we were able to identify a precise HO length to get an ESIONP probe showing prolonged vascular lifetime and moderate accumulation in a tumor xenograft, balanced with a low uptake by non-specific organs and favourable urinary clearance. This probe met all prerequisites for advanced theranostic medical applications with a dual MRI/PET hot spot capability and potential antitumor activity.


Subject(s)
Ferric Compounds , Nanoparticles , Heparin , Magnetic Iron Oxide Nanoparticles , Magnetic Resonance Imaging , Precision Medicine , Theranostic Nanomedicine , Tissue Distribution
5.
Front Cell Dev Biol ; 8: 549, 2020.
Article in English | MEDLINE | ID: mdl-32733880

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a malignancy with a very poor prognosis due to highly metastatic profile. Cell migration is an essential step of the metastatic cascade allowing cancer cells to spread toward target tissues. Recent studies strongly suggest that bioactive elastin peptides, also named elastokines or elastin-derived peptides (EDPs), are released in the extracellular microenvironment during tumoral remodeling of the stroma. EDPs stimulate cancer cell migration by interacting with their membrane receptor, ribosomal protein SA (RPSA). Others membrane proteins like ion channels are also involved in cancer cell migration. It has been recently shown that the transient receptor potential melastatin-related 7 (TRPM7) channel regulates PDAC cell migration and invasion. The objective of this work was to study the effect of EDPs on TRPM7 channel in human pancreatic cancer cells. We showed that EDPs promote MIA PaCa-2 cell migration using Boyden chamber assay. Cells transfected with a siRNA targeting TRPM7 were not able to migrate in response to EDPs indicating that TRPM7 regulated cell migration induced by these peptides. Moreover, EDPs were able to stimulate TRPM7 currents recorded by Patch-Clamp. Finally, we showed that TRPM7 channels and RPSA receptors are colocalized at the plasma membrane of human pancreatic cancer cells. Taken together, our data suggest that TRPM7/RPSA complex regulated human pancreatic cancer cell migration. This complex may be a promising therapeutic target in PDAC.

6.
Biomolecules ; 11(1)2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33396696

ABSTRACT

Oral tongue squamous cell carcinoma is one of the most prevalent head and neck cancers. During tumor progression, elastin fragments are released in the tumor microenvironment. Among them, we previously identified a nonapeptide, AG-9, that stimulates melanoma progression in vivo in a mouse melanoma model. In the present paper, we studied AG-9 effect on tongue squamous cell carcinoma invasive properties. We demonstrated that AG-9 stimulates cell invasion in vitro in a modified Boyen chamber model. It increases MMP-2 secretion, analyzed by zymography and MT1-MMP expression, studied by Western blot. The stimulatory effect was mediated through Ribosomal Protein SA (RPSA) receptor binding as demonstrated by SiRNA experiments. The green tea-derived polyphenol, (-)-epigallocatechin-3-gallate (EGCG), was previously shown to bind RPSA. Molecular docking experiments were performed to compare the preferred areas of interaction of AG-9 and EGCG with RPSA and suggested overlapping areas. This was confirmed by competition assays. EGCG abolished AG-9-induced invasion, MMP-2 secretion, and MT1-MMP expression.


Subject(s)
Matrix Metalloproteinase 14/genetics , Matrix Metalloproteinase 2/genetics , Receptors, Laminin/genetics , Ribosomal Proteins/genetics , Squamous Cell Carcinoma of Head and Neck/drug therapy , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Elastin/genetics , Elastin/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Peptides/genetics , Peptides/pharmacology , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology
7.
Mar Drugs ; 17(3)2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30818840

ABSTRACT

In tumor development, the degradation of heparan sulfate (HS) by heparanase (HPSE) is associated with cell-surface and extracellular matrix remodeling as well as the release of HS-bound signaling molecules, allowing cancer cell migration, invasion and angiogenesis. Because of their structural similarity with HS, sulfated polysaccharides are considered a promising source of molecules to control these activities. In this study, we used a depolymerisation method for producing λ-carrageenan oligosaccharides (λ-CO), with progressive desulfation over time. These were then used to investigate the influence of polymeric chain length and degree of sulfation (DS) on their anti-HPSE activity. The effects of these two features on λ-CO anticoagulant properties were also investigated to eliminate a potential limitation on the use of a candidate λ-CO as a chemotherapeutic agent. HPSE inhibition was mainly related to the DS of λ-CO, however this correlation was not complete. On the other hand, both chain length and DS modulated λ-CO activity for factor Xa and thrombin IIa inhibition, two enzymes that are involved in the coagulation cascade, and different mechanisms of inhibition were observed. A λ-carrageenan oligosaccharide of 5.9 KDa was identified as a suitable anticancer candidate because it displayed one of the lowest anticoagulant properties among the λ-CO produced, while showing a remarkable inhibitory effect on MDA-MB-231 breast cancer cell migration.


Subject(s)
Anticoagulants/pharmacology , Antineoplastic Agents/pharmacology , Carrageenan/pharmacology , Glucuronidase/antagonists & inhibitors , Oligosaccharides/pharmacology , Anticoagulants/chemistry , Antineoplastic Agents/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Carrageenan/chemistry , Cell Line, Tumor , Cell Movement/drug effects , Drug Screening Assays, Antitumor , Enzyme Assays , Female , Glucuronidase/metabolism , Heparitin Sulfate/metabolism , Humans , Oligosaccharides/chemistry
8.
Infect Dis Poverty ; 7(1): 81, 2018 Aug 10.
Article in English | MEDLINE | ID: mdl-30092816

ABSTRACT

BACKGROUND: Climate-based disease forecasting has been proposed as a potential tool in climate change adaptation for the health sector. Here we explore the relevance of climate data, drivers and predictions for vector-borne disease control efforts in Africa. METHODS: Using data from a number of sources we explore rainfall and temperature across the African continent, from seasonality to variability at annual, multi-decadal and timescales consistent with climate change. We give particular attention to three regions defined as WHO-TDR study zones in Western, Eastern and Southern Africa. Our analyses include 1) time scale decomposition to establish the relative importance of year-to-year, decadal and long term trends in rainfall and temperature; 2) the impact of the El Niño Southern Oscillation (ENSO) on rainfall and temperature at the Pan African scale; 3) the impact of ENSO on the climate of Tanzania using high resolution climate products and 4) the potential predictability of the climate in different regions and seasons using Generalized Relative Operating Characteristics. We use these analyses to review the relevance of climate forecasts for applications in vector borne disease control across the continent. RESULTS: Timescale decomposition revealed long term warming in all three regions of Africa - at the level of 0.1-0.3 °C per decade. Decadal variations in rainfall were apparent in all regions and particularly pronounced in the Sahel and during the East African long rains (March-May). Year-to-year variability in both rainfall and temperature, in part associated with ENSO, were the dominant signal for climate variations on any timescale. Observed climate data and seasonal climate forecasts were identified as the most relevant sources of climate information for use in early warning systems for vector-borne diseases but the latter varied in skill by region and season. CONCLUSIONS: Adaptation to the vector-borne disease risks of climate variability and change is a priority for government and civil society in African countries. Understanding rainfall and temperature variations and trends at multiple timescales and their potential predictability is a necessary first step in the incorporation of relevant climate information into vector-borne disease control decision-making.


Subject(s)
Climate Change/statistics & numerical data , Communicable Diseases/epidemiology , Disease Outbreaks , Models, Statistical , Africa/epidemiology , Animals , Communicable Diseases/transmission , Computer Simulation , Disease Vectors/classification , El Nino-Southern Oscillation , Hot Temperature , Humans , Rain , Seasons , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL