Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 14(15): 5758-5768, 2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35348558

ABSTRACT

Strain plays an important role for the optical properties of monolayer transition metal dichalcogenides (TMDCs). Here, we investigate strain effects in a monolayer MoSe2 sample with a large bubble region using µ-Raman, second harmonic generation (SHG), µ-photoluminescence and magneto µ-photoluminescence at low temperature. Remarkably, our results reveal the presence of a non-uniform strain field and the observation of emission peaks at lower energies which are the signatures of exciton and trion quasiparticles red-shifted by strain effects in the bubble region, in agreement with our theoretical predictions. Furthermore, we have observed that the emission in the strained region decreases the trion binding energy and enhances the valley g-factors as compared to non-strained regions. Considering uniform biaxial strain effects within the unit cell of the TMDC monolayer (ML), our first principles calculations predict the observed enhancement of the exciton valley Zeeman effect. In addition, our results suggest that the exciton-trion fine structure plays an important role for the optical properties of strained TMDC ML. In summary, our study provides fundamental insights on the behaviour of excitons and trions in strained monolayer MoSe2 which are particularly relevant to properly characterize and understand the fine structure of excitonic complexes in strained TMDC systems/devices.

2.
Nanoscale ; 10(10): 4807-4815, 2018 Mar 08.
Article in English | MEDLINE | ID: mdl-29469923

ABSTRACT

Monolayers of transition metal dichalcogenides (TMD) are promising materials for optoelectronics devices. However, one of the challenges is to fabricate large-scale growth of high quality TMD monolayers with the desired properties in order to expand their use in potential applications. Here, we demonstrate large-scale tungsten disulfide (WS2) monolayers grown by van der Waals Epitaxy (VdWE). We show that, in addition to the large structural uniformity and homogeneity of these samples, their optical properties are very sensitive to laser irradiation. We observe a time instability in the photoluminescence (PL) emission at low temperatures in the scale of seconds to minutes. Interestingly, this change of the PL spectra with time, which is due to laser induced carrier doping, is employed to successfully distinguish the emission of two negatively charged bright excitons. Furthermore, we also detect blinking sharp bound exciton emissions which are usually attractive for single photon sources. Our findings contribute to a deeper understanding of this complex carrier dynamics induced by laser irradiation which is very important for future optoelectronic devices based on large scale TMD monolayers.

3.
Nano Lett ; 12(10): 5269-74, 2012 Oct 10.
Article in English | MEDLINE | ID: mdl-22989367

ABSTRACT

We realize the growth of self-catalyzed core-shell GaAs/GaAsP nanowires (NWs) on Si substrates using molecular-beam epitaxy. Transmission electron microscopy of single GaAs/GaAsP NWs demonstrates their high crystal quality and shows domination of the GaAs zinc-blende phase. Using continuous-wave and time-resolved photoluminescence (PL), we make a detailed comparison with uncapped GaAs NWs to emphasize the effect of the GaAsP capping in suppressing the nonradiative surface states. Significant PL enhancement in the core-shell structures exceeding 3 orders of magnitude at 10 K is observed; in uncapped NWs PL is quenched at 60 K, whereas single core-shell GaAs/GaAsP structures exhibit bright emission even at room temperature. From analysis of the PL temperature dependence in both types of NW we are able to determine the main carrier escape mechanisms leading to the PL quench.

4.
Phys Rev Lett ; 98(3): 036603, 2007 Jan 19.
Article in English | MEDLINE | ID: mdl-17358707

ABSTRACT

Mobile piezoelectric potentials are used to coherently transport electron spins in GaAs (110) quantum wells (QW) over distances exceeding 60 microm. We demonstrate that the dynamics of mobile spins under external magnetic fields depends on the direction of motion in the QW plane. This transport anisotropy is an intrinsic property of moving spins associated with the bulk inversion asymmetry of the underlying GaAs lattice.

5.
Phys Rev Lett ; 95(7): 077203, 2005 Aug 12.
Article in English | MEDLINE | ID: mdl-16196819

ABSTRACT

We present a systematic experimental and theoretical study of the first-order phase transition of epitaxially grown MnAs thin films under biaxial tensile stress. Our results give direct information on the dependence of the phase-transition temperature of MnAs films on the lattice parameters. We demonstrate that an increase of the lattice constant in the hexagonal plane raises the phase-transition temperature (T(p)), while an increase of the perpendicular lattice constant lowers T(p). The results of calculations based on density functional theory are in good agreement with the experimental ones. Our findings open exciting prospects for magneto-mechanical devices, where the critical temperature for ferromagnetism can be engineered by external stress.

SELECTION OF CITATIONS
SEARCH DETAIL
...