Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO J ; 41(24): e112006, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36398858

ABSTRACT

Mitochondria are increasingly recognized as cellular hubs to orchestrate signaling pathways that regulate metabolism, redox homeostasis, and cell fate decisions. Recent research revealed a role of mitochondria also in innate immune signaling; however, the mechanisms of how mitochondria affect signal transduction are poorly understood. Here, we show that the NF-κB pathway activated by TNF employs mitochondria as a platform for signal amplification and shuttling of activated NF-κB to the nucleus. TNF treatment induces the recruitment of HOIP, the catalytic component of the linear ubiquitin chain assembly complex (LUBAC), and its substrate NEMO to the outer mitochondrial membrane, where M1- and K63-linked ubiquitin chains are generated. NF-κB is locally activated and transported to the nucleus by mitochondria, leading to an increase in mitochondria-nucleus contact sites in a HOIP-dependent manner. Notably, TNF-induced stabilization of the mitochondrial kinase PINK1 furthermore contributes to signal amplification by antagonizing the M1-ubiquitin-specific deubiquitinase OTULIN. Overall, our study reveals a role for mitochondria in amplifying TNF-mediated NF-κB activation, both serving as a signaling platform, as well as a transport mode for activated NF-κB to the nuclear.


Subject(s)
NF-kappa B , Ubiquitin , NF-kappa B/genetics , NF-kappa B/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Signal Transduction/physiology , Mitochondria/metabolism , Ubiquitination
2.
Adv Protein Chem Struct Biol ; 126: 307-343, 2021.
Article in English | MEDLINE | ID: mdl-34090618

ABSTRACT

The maintenance of cellular homeostasis involves the participation of multiple organelles, such as the endoplasmic reticulum (ER) and mitochondria. Specifically, ER plays a key role in calcium (Ca2+) storage, lipid synthesis, protein folding, and assembly, while mitochondria are the "energy factories" and provide energy to drive intracellular processes. Hence, alteration in ER or mitochondrial homeostasis has detrimental effects on cell survival, being linked to the triggering of apoptosis, a programmed form of cell death. Besides, ER stress conditions affect mitochondria functionality and vice-versa, as ER and mitochondria communicate via mitochondria-associated ER membranes (MAMs) to carry out a number of fundamental cellular functions. It is not surprising, thus, that also MAMs perturbations are involved in the regulation of apoptosis. This chapter intends to accurately discuss the involvement of MAMs in apoptosis, highlighting their crucial role in controlling this delicate cellular process.


Subject(s)
Apoptosis , Endoplasmic Reticulum/metabolism , Intracellular Membranes/metabolism , Mitochondria/metabolism , Signal Transduction , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...