Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Sci Adv ; 9(46): eadg8126, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37967174

ABSTRACT

Thymic epithelial cells (TEC) control T cell development and play essential roles in establishing self-tolerance. By using Foxn1-Cre-driven ablation of Klf6 gene in TEC, we identified Klf6 as a critical factor in TEC development. Klf6 deficiency resulted in a hypoplastic thymus-evident from fetal stages into adulthood-in which a dramatic increase in the frequency of apoptotic TEC was observed. Among cortical TEC (cTEC), a previously unreported cTEC population expressing the transcription factor Sox10 was relatively expanded. Within medullary TEC (mTEC), mTEC I and Tuft-like mTEC IV were disproportionately decreased. Klf6 deficiency altered chromatin accessibility and affected TEC chromatin configuration. Consistent with these defects, naïve conventional T cells and invariant natural killer T cells were reduced in the spleen. Late stages of T cell receptor-dependent selection of thymocytes were affected, and mice exhibited autoimmunity. Thus, Klf6 has a prosurvival role and affects the development of specific TEC subsets contributing to thymic function.


Subject(s)
Gene Expression Regulation , Thymocytes , Animals , Mice , Cell Differentiation/genetics , Chromatin/metabolism , Epithelial Cells/metabolism , Mice, Inbred C57BL , Thymocytes/metabolism , Thymus Gland/metabolism
2.
Immunity ; 56(3): 562-575.e6, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36842431

ABSTRACT

Dietary components and metabolites have a profound impact on immunity and inflammation. Here, we investigated how sensing of cholesterol metabolite oxysterols by γδ T cells impacts their tissue residency and function. We show that dermal IL-17-producing γδ T (Tγδ17) cells essential for skin-barrier homeostasis require oxysterols sensing through G protein receptor 183 (GPR183) for their development and inflammatory responses. Single-cell transcriptomics and murine reporter strains revealed that GPR183 on developing γδ thymocytes is needed for their maturation by sensing medullary thymic epithelial-cell-derived oxysterols. In the skin, basal keratinocytes expressing the oxysterol enzyme cholesterol 25-hydroxylase (CH25H) maintain dermal Tγδ17 cells. Diet-driven increases in oxysterols exacerbate Tγδ17-cell-mediated psoriatic inflammation, dependent on GPR183 on γδ T cells. Hence, cholesterol-derived oxysterols control spatially distinct but biologically linked processes of thymic education and peripheral function of dermal T cells, implicating diet as a focal parameter of dermal Tγδ17 cells.


Subject(s)
Cholesterol, Dietary , Oxysterols , Humans , Animals , Mice , Oxysterols/metabolism , Skin/metabolism , Inflammation , GTP-Binding Proteins/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, G-Protein-Coupled/metabolism
3.
Methods Mol Biol ; 2580: 25-49, 2023.
Article in English | MEDLINE | ID: mdl-36374449

ABSTRACT

Thymic epithelial cells (TECs) make up the thymic microenvironments that support the generation of a functionally competent and self-tolerant T-cell repertoire. Cortical (c)TECs, present in the cortex, are essential for early thymocyte development including selection of thymocytes expressing functional TCRs (positive selection). Medullary (m)TECs, located in the medulla, play a key role in late thymocyte development, including depletion of self-reactive T cells (negative selection) and selection of regulatory T cells. In recent years, transcriptomic analysis by single-cell (sc)RNA sequencing (Seq) has revealed TEC heterogeneity previously masked by population-level RNA-Seq or phenotypic studies. We summarize the discoveries made possible by scRNA-Seq, including the identification of novel mTEC subsets, advances in understanding mTEC promiscuous gene expression, and TEC alterations from embryonic to adult stages. Whereas pseudotime analyses of scRNA-Seq data can suggest relationships between TEC subsets, experimental methods such as lineage tracing and reaggregate thymic organ culture (RTOC) are required to test these hypotheses. Lineage tracing - namely, of ß5t or Aire expressing cells - has exposed progenitor and parent-daughter cellular relationships within TEC.


Subject(s)
Epithelial Cells , Thymus Gland , Animals , Mice , Cell Differentiation/genetics , Sequence Analysis, RNA , Biology , Mice, Inbred C57BL , Cell Lineage/genetics
4.
J Immunol ; 2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36375838

ABSTRACT

In the thymus, cortical thymic epithelial cells (cTECs) and medullary thymic epithelial cells support αßT cell development from lymphoid progenitors. For cTECs, expression of a specialized gene signature that includes Cxcl12, Dll4, and Psmb11 enables the cortex to support T lineage commitment and the generation and selection of CD4+CD8+ thymocytes. Although the importance of cTECs in T cell development is well defined, mechanisms that shape the cTEC compartment and regulate its functional specialization are unclear. Using a Cxcl12 DsRed reporter mouse model, we show that changes in Cxcl12 expression reveal a developmentally regulated program of cTEC heterogeneity. Although cTECs are uniformly Cxcl12 DsRed+ during neonatal stages, progression through postnatal life triggers the appearance of Cxcl12 DsRed- cTECs that continue to reside in the cortex alongside their Cxcl12 DsRed+ counterparts. This appearance of Cxcl12 DsRed- cTECs is controlled by maturation of CD4-CD8-, but not CD4+CD8+, thymocytes, demonstrating that stage-specific thymocyte cross-talk controls cTEC heterogeneity. Importantly, although fate-mapping experiments show both Cxcl12 DsRed+ and Cxcl12 DsRed- cTECs share a common Foxn1 + cell origin, RNA sequencing analysis shows Cxcl12 DsRed- cTECs no longer express Foxn1, which results in loss of the FOXN1-dependent cTEC gene signature and may explain the reduced capacity of Cxcl12 DsRed- cTECs for thymocyte interactions. In summary, our study shows that shaping of the cTEC compartment during the life course occurs via stage-specific thymocyte cross-talk, which drives loss of Foxn1 expression and its key target genes, which may then determine the functional competence of the thymic cortex.

5.
J Immunol ; 2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36427001

ABSTRACT

In the thymus, cortical thymic epithelial cells (cTECs) and medullary thymic epithelial cells support αßT cell development from lymphoid progenitors. For cTECs, expression of a specialized gene signature that includes Cxcl12, Dll4, and Psmb11 enables the cortex to support T lineage commitment and the generation and selection of CD4+CD8+ thymocytes. Although the importance of cTECs in T cell development is well defined, mechanisms that shape the cTEC compartment and regulate its functional specialization are unclear. Using a Cxcl12DsRed reporter mouse model, we show that changes in Cxcl12 expression reveal a developmentally regulated program of cTEC heterogeneity. Although cTECs are uniformly Cxcl12DsRed+ during neonatal stages, progression through postnatal life triggers the appearance of Cxcl12DsRed- cTECs that continue to reside in the cortex alongside their Cxcl12DsRed+ counterparts. This appearance of Cxcl12DsRed- cTECs is controlled by maturation of CD4-CD8-, but not CD4+CD8+, thymocytes, demonstrating that stage-specific thymocyte cross-talk controls cTEC heterogeneity. Importantly, although fate-mapping experiments show both Cxcl12DsRed+ and Cxcl12DsRed- cTECs share a common Foxn1+ cell origin, RNA sequencing analysis shows Cxcl12DsRed- cTECs no longer express Foxn1, which results in loss of the FOXN1-dependent cTEC gene signature and may explain the reduced capacity of Cxcl12DsRed- cTECs for thymocyte interactions. In summary, our study shows that shaping of the cTEC compartment during the life course occurs via stage-specific thymocyte cross-talk, which drives loss of Foxn1 expression and its key target genes, which may then determine the functional competence of the thymic cortex.

7.
Trends Immunol ; 42(10): 844-845, 2021 10.
Article in English | MEDLINE | ID: mdl-34479799

ABSTRACT

Zegarra-Ruiz et al. demonstrate that gut microbe-specific T cells are selected within the thymus exclusively during early life in mice. This selection is dependent on CX3CR1+ dendritic cells migrating from the gut carrying bacterially derived antigens into the thymus. This offers new insight into how gut microbiota influence T cell development.


Subject(s)
Gastrointestinal Microbiome , T-Lymphocytes , Animals , Cell Differentiation , Mice
8.
Elife ; 92020 10 14.
Article in English | MEDLINE | ID: mdl-33051000

ABSTRACT

WNK1, a kinase that controls kidney salt homeostasis, also regulates adhesion and migration in CD4+ T cells. Wnk1 is highly expressed in thymocytes, and since migration is important for thymocyte maturation, we investigated a role for WNK1 in mouse thymocyte development. We find that WNK1 is required for the transition of double negative (DN) thymocytes through the ß-selection checkpoint and subsequent proliferation and differentiation into double positive (DP) thymocytes. Furthermore, we show that WNK1 negatively regulates LFA1-mediated adhesion and positively regulates CXCL12-induced migration in DN thymocytes. Despite this, migration defects of WNK1-deficient thymocytes do not account for the developmental arrest. Instead, we show that in DN thymocytes WNK1 transduces pre-TCR signals via OXSR1 and STK39 kinases, and the SLC12A2 ion co-transporter that are required for post-transcriptional upregulation of MYC and subsequent proliferation and differentiation into DP thymocytes. Thus, a pathway regulating ion homeostasis is a critical regulator of thymocyte development.


Subject(s)
Cell Differentiation/genetics , Proto-Oncogene Proteins c-myc/genetics , Thymocytes/metabolism , Thymus Gland/metabolism , WNK Lysine-Deficient Protein Kinase 1/genetics , Animals , Mice , Proto-Oncogene Proteins c-myc/metabolism , WNK Lysine-Deficient Protein Kinase 1/metabolism
9.
Front Immunol ; 11: 897, 2020.
Article in English | MEDLINE | ID: mdl-32477366

ABSTRACT

Thymus involution occurs in all vertebrates. It is thought to impact on immune responses in the aged, and in other clinical circumstances such as bone marrow transplantation. Determinants of thymus growth and size are beginning to be identified. Ectopic expression of factors like cyclin D1 and Myc in thymic epithelial cells (TEC)s results in considerable increase in thymus size. These models provide useful experimental tools that allow thymus function to be understood. In future, understanding TEC-specific controllers of growth will provide new approaches to thymus regeneration.


Subject(s)
Aging , Cell Differentiation , Thymus Gland/physiology , Aging/physiology , Animals , Epithelial Cells/physiology , Humans , Mice , Stem Cells/physiology , Thymus Gland/cytology
10.
Nat Commun ; 10(1): 5498, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31792212

ABSTRACT

Interactions between thymic epithelial cells (TEC) and developing thymocytes are essential for T cell development, but molecular insights on TEC and thymus homeostasis are still lacking. Here we identify distinct transcriptional programs of TEC that account for their age-specific properties, including proliferation rates, engraftability and function. Further analyses identify Myc as a regulator of fetal thymus development to support the rapid increase of thymus size during fetal life. Enforced Myc expression in TEC induces the prolonged maintenance of a fetal-specific transcriptional program, which in turn extends the growth phase of the thymus and enhances thymic output; meanwhile, inducible expression of Myc in adult TEC similarly promotes thymic growth. Mechanistically, this Myc function is associated with enhanced ribosomal biogenesis in TEC. Our study thus identifies age-specific transcriptional programs in TEC, and establishes that Myc controls thymus size.


Subject(s)
Epithelial Cells/metabolism , Oncogene Protein p55(v-myc)/metabolism , Thymus Gland/embryology , Transcription, Genetic , Animals , Epithelial Cells/cytology , Female , Gene Expression Regulation, Developmental , Humans , Male , Mice , Mice, Transgenic , Oncogene Protein p55(v-myc)/genetics , Organ Size , Organogenesis , Thymus Gland/metabolism
12.
Am J Hum Genet ; 105(3): 549-561, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31447097

ABSTRACT

FOXN1 is the master regulatory gene of thymic epithelium development. FOXN1 deficiency leads to thymic aplasia, alopecia, and nail dystrophy, accounting for the nude/severe combined immunodeficiency (nu/SCID) phenotype in humans and mice. We identified several newborns with low levels of T cell receptor excision circles (TRECs) and T cell lymphopenia at birth, who carried heterozygous loss-of-function FOXN1 variants. Longitudinal analysis showed persistent T cell lymphopenia during infancy, often associated with nail dystrophy. Adult individuals with heterozygous FOXN1 variants had in most cases normal CD4+ but lower than normal CD8+ cell counts. We hypothesized a FOXN1 gene dosage effect on the function of thymic epithelial cells (TECs) and thymopoiesis and postulated that these effects would be more prominent early in life. To test this hypothesis, we analyzed TEC subset frequency and phenotype, early thymic progenitor (ETP) cell count, and expression of FOXN1 target genes (Ccl25, Cxcl12, Dll4, Scf, Psmb11, Prss16, and Cd83) in Foxn1nu/+ (nu/+) mice and age-matched wild-type (+/+) littermate controls. Both the frequency and the absolute count of ETP were significantly reduced in nu/+ mice up to 3 weeks of age. Analysis of the TEC compartment showed reduced expression of FOXN1 target genes and delayed maturation of the medullary TEC compartment in nu/+ mice. These observations establish a FOXN1 gene dosage effect on thymic function and identify FOXN1 haploinsufficiency as an important genetic determinant of T cell lymphopenia at birth.


Subject(s)
Forkhead Transcription Factors/genetics , Heterozygote , Lymphopenia/genetics , T-Lymphocytes/metabolism , Thymus Gland/cytology , Adult , Aged , Animals , Child, Preschool , Female , Forkhead Transcription Factors/physiology , Humans , Infant , Infant, Newborn , Male , Mice , Mice, SCID , Middle Aged , Young Adult
13.
J Immunol ; 203(3): 686-695, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31243087

ABSTRACT

The thymus is critical for the establishment of the adaptive immune system and the development of a diverse T cell repertoire. T cell development depends upon cell-cell interactions with epithelial cells in the thymus. The thymus is composed of two different types of epithelial cells: cortical and medullary epithelial cells. Both of these express and critically depend on the transcription factor Foxn1 Foxn1 is also expressed in the hair follicle, and disruption of Foxn1 function in mice results in severe thymic developmental defects and the hairless (nude) phenotype. Despite its importance, little is known about the direct regulation of Foxn1 expression. In this study, we identify a cis-regulatory element (RE) critical for expression of Foxn1 in mouse thymic epithelial cells but dispensable for expression in hair follicles. Analysis of chromatin accessibility, histone modifications, and sequence conservation identified regions within the first intron of Foxn1 that possessed the characteristics of REs. Systematic knockout of candidate regions lead us to identify a 1.6 kb region that, when deleted, results in a near total disruption of thymus development. Interestingly, Foxn1 expression and function in the hair follicle were unaffected. RNA fluorescent in situ hybridization showed a near complete loss of Foxn1 mRNA expression in the embryonic thymic bud. Our studies have identified a genomic RE with thymic-specific control of Foxn1 gene expression.


Subject(s)
Epithelial Cells/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Regulatory Elements, Transcriptional/genetics , T-Lymphocytes/immunology , Thymus Gland/metabolism , Animals , Forkhead Transcription Factors/biosynthesis , Gene Expression Regulation , Gene Knockout Techniques , Hair Follicle/metabolism , Mice , Mice, Knockout , Mice, Nude , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , T-Lymphocytes/cytology , Thymus Gland/cytology
14.
Eur J Immunol ; 48(5): 844-854, 2018 05.
Article in English | MEDLINE | ID: mdl-29285761

ABSTRACT

In the thymus, medullary thymic epithelial cells (mTEC) determine the fate of newly selected CD4+ and CD8+ single positive (SP) thymocytes. For example, mTEC expression of Aire controls intrathymic self-antigen availability for negative selection. Interestingly, alterations in both Foxp3+ Regulatory T-cells (T-Reg) and conventional SP thymocytes in Aire-/- mice suggest additional, yet poorly understood, roles for Aire during intrathymic T-cell development. To examine this, we analysed thymocytes from Aire-/- mice using Rag2GFP and Foxp3 expression, and a recently described CD69/MHCI subset definition of post-selection CD4+ conventional thymocytes. We show that while Aire is dispensable for de novo generation of conventional αßT-cells, it plays a key role in controlling the intrathymic T-Reg pool. Surprisingly, a decline in intrathymic T-Reg in Aire-/- mice maps to a reduction in mature recirculating Rag2GFP- T-Reg that express CCR6 and re-enter the thymus from the periphery. Furthermore, we show mTEC expression of the CCR6 ligand CCL20 is reduced in Aire-/- mice, and that CCR6 is required for T-Reg recirculation back to the thymus. Collectively, our study re-defines requirements for late stage intrathymic αßT-cell development, and demonstrates that Aire controls a CCR6-CCL20 axis that determines the developmental makeup of the intrathymic T-Reg pool.


Subject(s)
Epithelial Cells/cytology , T-Lymphocytes, Regulatory/immunology , Thymocytes/cytology , Thymus Gland/cytology , Transcription Factors/immunology , Animals , Antigens, CD/immunology , Antigens, Differentiation, T-Lymphocyte/immunology , Cell Differentiation/immunology , Chemokine CCL20/biosynthesis , DNA-Binding Proteins/genetics , Forkhead Transcription Factors/biosynthesis , Immune Tolerance/immunology , Lectins, C-Type/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Thymocytes/immunology , Transcription Factors/genetics , AIRE Protein
15.
Nat Immunol ; 17(10): 1129-32, 2016 Sep 20.
Article in English | MEDLINE | ID: mdl-27648536
16.
Cell Rep ; 14(5): 1041-1048, 2016 Feb 09.
Article in English | MEDLINE | ID: mdl-26832402

ABSTRACT

Current models of Foxp3(+) regulatory T cell (Treg) development involve CCR7-mediated migration of thymocytes into the thymus medulla to enable essential interactions with medullary epithelium. However, increased Foxp3(+) thymic Treg numbers in Ccr7(-/-) mice challenge this view, and the role of CCR7 in Treg development, emigration, and/or recirculation is unknown. Here, we have examined CCR7 and Rag2pGFP levels during Treg development and generated Rag2pGFPCcr7(-/-) mice to study its impact on the intrathymic Treg pool. We reveal surprising developmental heterogeneity in thymocytes described as Treg precursors, showing that they contain recirculating CCR6(+)CCR7(-)Rag2pGFP(-) T cells. Although CCR7 defines bona fide Rag2GFP(+) Treg precursors, it is not required for Treg production and emigration. Rather, we show that lack of CCR7 renders the thymus more receptive to Treg thymus homing. Our study reveals a role for CCR7 in limiting Treg recirculation back to the thymus and enables separation of the mechanisms controlling Treg production and thymic recirculation.


Subject(s)
Cell Movement , Forkhead Transcription Factors/metabolism , Receptors, CCR7/metabolism , Thymus Gland/cytology , Animals , Cell Differentiation , Interleukin-2 Receptor alpha Subunit/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Receptors, CCR6/metabolism , T-Lymphocytes, Regulatory/cytology
17.
J Immunol ; 195(6): 2675-82, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26254339

ABSTRACT

In the thymus, medullary thymic epithelial cells (mTEC) regulate T cell tolerance via negative selection and Foxp3(+) regulatory T cell (Treg) development, and alterations in the mTEC compartment can lead to tolerance breakdown and autoimmunity. Both the receptor activator for NF-κB (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) axis and expression of the transcriptional regulator Aire are involved in the regulation of thymus medullary microenvironments. However, their impact on the mechanisms controlling mTEC homeostasis is poorly understood, as are the processes that enable the thymus medulla to support the balanced production of mTEC-dependent Foxp3(+) Treg. In this study, we have investigated the control of mTEC homeostasis and examined how this process impacts the efficacy of Foxp3(+) Treg development. Using newly generated RANK Venus reporter mice, we identify distinct RANK(+) subsets that reside within both the mTEC(hi) and mTEC(lo) compartments and that represent direct targets of OPG-mediated control. Moreover, by mapping OPG expression to a subset of Aire(+) mTEC, our data show how cis- and trans-acting mechanisms are able to control the thymus medulla by operating on multiple mTEC targets. Finally, we show that whereas the increase in mTEC availability in OPG-deficient (Tnfrsf11b(-/-)) mice impacts the intrathymic Foxp3(+) Treg pool by enhancing peripheral Treg recirculation back to the thymus, it does not alter the number of de novo Rag2pGFP(+)Foxp3(+) Treg that are generated. Collectively, our study defines patterns of RANK expression within the thymus medulla, and it shows that mTEC homeostasis is not a rate-limiting step in intrathymic Foxp3(+) Treg production.


Subject(s)
Lymphopoiesis/immunology , Osteoprotegerin/genetics , RANK Ligand/immunology , T-Lymphocytes, Regulatory/immunology , Thymus Gland/metabolism , Animals , Autoimmunity/immunology , Cells, Cultured , DNA-Binding Proteins/genetics , Epithelial Cells , Forkhead Transcription Factors/metabolism , Gene Expression Regulation , Green Fluorescent Proteins/genetics , Immune Tolerance/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/immunology , Organ Culture Techniques , Osteoprotegerin/biosynthesis , Osteoprotegerin/immunology , RANK Ligand/biosynthesis , Signal Transduction/immunology , T-Lymphocytes, Regulatory/cytology , Thymus Gland/cytology , Thymus Gland/immunology , Transcription Factors/biosynthesis , AIRE Protein
18.
J Autoimmun ; 63: 13-22, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26143957

ABSTRACT

The thymic medulla is critical for the enforcement of central tolerance. In addition to deletion of auto-reactive T-cells, the thymic medulla supports the maturation of heterogeneous natural αßT-cells linked to tolerance mechanisms. Natural IL-17-secreting CD4(+)αßT-cells (nTh17) represent recently described natural αßT-cells that mature and undergo functional priming intrathymically. Despite a proposed potential to impact upon either protective or pathological inflammatory responses, the intrathymic mechanisms regulating the balance of nTh17 development are unclear. Here we compare the development of distinct natural αßT-cells in the thymus. We reveal that thymic stromal MHC class II expression and RelB-dependent medullary thymic epithelial cells (mTEC), including Aire(+) mTEC, are an essential requirement for nTh17 development. nTh17 demonstrate a partial, non-redundant requirement for both ICOS-ligand and CD80/86 costimulation, with a dispensable role for CD80/86 expression by thymic epithelial cells. Although mTEC constitutively expressed inducible nitric oxide synthase (iNOS), a critical negative regulator of conventional Th17 differentiation, iNOS was not essential to constrain thymic nTh17. These findings highlight the critical role of the thymic medulla in the differential regulation of novel natural αßT-cell subsets, and reveal additional layers of thymic medullary regulation of T-cell driven autoimmunity and inflammation.


Subject(s)
Cellular Microenvironment/immunology , Th17 Cells/immunology , Th17 Cells/metabolism , Thymus Gland/metabolism , Animals , Autoimmunity/immunology , Cell Differentiation , Humans , Immune Tolerance , Mice , Mice, Inbred BALB C , Thymus Gland/embryology , Thymus Gland/immunology
19.
Eur J Immunol ; 45(3): 652-60, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25615828

ABSTRACT

The organization of the thymus into distinct cortical and medullary regions enables it to control the step-wise migration and development of immature T-cell precursors. Such a process provides access to specialized cortical and medullary thymic epithelial cells at defined stages of maturation, ensuring the generation of self-tolerant and MHC-restricted conventional CD4(+) and CD8(+) αß T cells. The migratory cues and stromal cell requirements that regulate the development of conventional αß T cells have been well studied. However, the thymus also fosters the generation of several immunoregulatory T-cell populations that form key components of both innate and adaptive immune responses. These include Foxp3(+) natural regulatory T cells, invariant γδ T cells, and CD1d-restricted invariant natural killer T cells (iNKT cells). While less is known about the intrathymic requirements of these nonconventional T cells, recent studies have highlighted the importance of the thymus medulla in their development. Here, we review recent findings on the mechanisms controlling the intrathymic migration of distinct T-cell subsets, and relate this to knowledge of the microenvironmental requirements of these cells.


Subject(s)
Cell Movement/immunology , Natural Killer T-Cells/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocytes, Regulatory/immunology , Thymus Gland/immunology , Animals , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Humans , Natural Killer T-Cells/cytology , Receptors, Antigen, T-Cell, alpha-beta/immunology , T-Lymphocytes, Regulatory/cytology , Thymus Gland/cytology
20.
J Immunol ; 193(3): 1204-12, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24990081

ABSTRACT

αßT cell development depends upon serial migration of thymocyte precursors through cortical and medullary microenvironments, enabling specialized stromal cells to provide important signals at specific stages of their development. Although conventional αßT cells are subject to clonal deletion in the medulla, entry into the thymus medulla also fosters αßT cell differentiation. For example, during postnatal periods, the medulla is involved in the intrathymic generation of multiple αßT cell lineages, notably the induction of Foxp3(+) regulatory T cell development and the completion of invariant NKT cell development. Although migration of conventional αßT cells to the medulla is mediated by the chemokine receptor CCR7, how other T cell subsets gain access to medullary areas during their normal development is not clear. In this study, we show that combining a panel of thymocyte maturation markers with cell surface analysis of CCR7 and CCR4 identifies distinct stages in the development of multiple αßT cell lineages in the thymus. Although Aire regulates expression of the CCR4 ligands CCL17 and CCL22, we show that CCR4 is dispensable for thymocyte migration and development in the adult thymus, demonstrating defective T cell development in Aire(-/-) mice is not because of a loss of CCR4-mediated migration. Moreover, we reveal that CCR7 controls the development of invariant NKT cells by enabling their access to IL-15 trans-presentation in the thymic medulla and influences the balance of early and late intrathymic stages of Foxp3(+) regulatory T cell development. Collectively, our data identify novel roles for CCR7 during intrathymic T cell development, highlighting its importance in enabling multiple αßT cell lineages to access the thymic medulla.


Subject(s)
Cell Differentiation/immunology , Receptors, Antigen, T-Cell, alpha-beta/biosynthesis , Receptors, CCR4/physiology , Receptors, CCR7/physiology , T-Lymphocyte Subsets/immunology , Thymus Gland/immunology , Thymus Gland/metabolism , Adaptive Immunity , Animals , Biomarkers/analysis , Cell Lineage/immunology , Epithelial Cells/cytology , Epithelial Cells/immunology , Epithelial Cells/metabolism , Immunity, Innate , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, CCR4/deficiency , Receptors, CCR7/deficiency , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Thymus Gland/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...