Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Gen Comp Endocrinol ; 279: 184-195, 2019 08 01.
Article in English | MEDLINE | ID: mdl-30923006

ABSTRACT

Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide belonging to the RFamide peptide family that was first discovered in quail by Tsutsui and co-workers in the year 2000. Since then, different GnIH orthologues have been identified in all vertebrate groups, from agnathans to mammals. These GnIH genes synthesize peptide precursors that encompass two to four C-terminal LPXRFamide peptides. Functional and behavioral studies carried out in birds and mammals have demonstrated a clear inhibitory role of GnIH on GnRH and gonadotropin synthesis and secretion as well as on aggressive and sexual behavior. However, the effects of Gnih orthologues in reproduction remain controversial in fish with both stimulatory and inhibitory actions being reported. In this paper, we will review the main findings obtained in our laboratory on the Gnih system of the European sea bass, Dicentrarchus labrax. The sea bass gnih gene encodes two putative Gnih peptides (sbGnih1 and sbGnih2), and is expressed in the olfactory bulbs/telencephalon, diencephalon, midbrain tegmentum, rostral rhombencephalon, retina and testis. The immunohistochemical study performed using specific antibodies developed in our laboratory revealed Gnih-immunoreactive (ir) perikarya in the same central areas and Gnih-ir fibers that profusely innervated the brain and pituitary of sea bass. Moreover, in vivo studies revealed the inhibitory role of centrally- and peripherally-administered Gnih in the reproductive axis of male sea bass, by acting at the brain (on gnrh and kisspeptin expression), pituitary (on gnrh receptors and gonadotropin synthesis and release) and gonadal (on androgen secretion and gametogenesis) levels. Our results have revealed the existence of a functional Gnih system in sea bass, and have provided evidence of the differential actions of the two Gnih peptides on the reproductive axis of this species, the main inhibitory role in the brain and pituitary being exerted by the sbGnih2 peptide. Recent studies developed in our laboratory also suggest that Gnih might be involved in the transduction of photoperiod and temperature information to the reproductive axis, as well as in the modulation of daily and seasonal rhythmic processes in sea bass.


Subject(s)
Bass/metabolism , Gonadotropins/metabolism , Hypothalamic Hormones/metabolism , Animals , Hypothalamic Hormones/chemistry , Organ Specificity , Reproduction/physiology
2.
Article in English | MEDLINE | ID: mdl-30802625

ABSTRACT

The brain-pituitary-gonadal (BPG) axis regulates the activation of the endocrine machinery that triggers reproduction, which is a typical rhythmic process. In this research we focused on investigating the daily expression rhythms of the key reproductive genes involved in the BPG axis and the liver of zebrafish. To this end, male and female zebrafish were subjected to a stimulating photoperiod with a 14 h light:10 h dark cycle. Brain, pituitary and gonads, as well as female liver samples, were taken every 4 h during a 24 h cycle. The results revealed that most genes exhibited statistically significant daily rhythms. Most of the brain reproductive genes (gnrh2, gnrh3, kiss1, kiss2 and gnrhr3) displayed a daily rhythm of expression with a nocturnal acrophase (between Zeitgeber Time [ZT] 14:34 h and ZT18:34 h, lights off at ZT = 14 h). The male kiss2 gene presented neither significant rhythms nor daily variations, while the male gnrh3 and female kiss2 genes exhibited diurnal peaks of expression at ZT06:34 h and ZT04:34 h, respectively. In contrast, the pituitary genes (fshß, lhß, gnrhr2) showed daily rhythms of expression with an acrophase during the light phase (between ZT02:10 h and ZT10:35 h). The female gnrhr3 gene exhibited neither significant rhythms nor daily variations. The male gnrhr3 gene presented a nocturnal acrophase (ZT14:32 h). The gonad genes (star, cyp17a1, 20ßhsd, lhr, fshr, cyp19a1a, foxl2, amh, dmrt1 and 11ßhsd) revealed statistically significant daily rhythms with nocturnal acrophases, except for female cyp17a1a (ZT06:21 h) and 20ßhsd (ZT05:19 h). Lastly, the female liver genes presented daily rhythms with a maximum peak of expression around the transition phase from darkness to light (ZT01:00 h for erα and at ZT23:09 h for vtg2). These findings are consistent with the daily reproduction rhythms displayed by zebrafish, which are timed by the reproductive axis. Considering that reproductive success is critical for survival of the species, the knowledge of the rhythms of the endocrine BPG machinery provides useful information to understand the reproduction process and to establish optimal protocols and conditions for reproductive treatments.


Subject(s)
Brain/physiology , Circadian Rhythm/genetics , Gonads/physiology , Liver/physiology , Pituitary Gland/physiology , Zebrafish/physiology , Animals , Female , Male , Reproduction/genetics
3.
Article in English | MEDLINE | ID: mdl-29163357

ABSTRACT

Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that belongs to the RFamide peptide family and was first identified in the quail brain. From the discovery of avian GnIH, orthologous GnIH peptides have been reported in a variety of vertebrates, including mammals, amphibians, teleosts and agnathans, but also in protochordates. It has been clearly established that GnIH suppresses reproduction in avian and mammalian species through its inhibitory actions on brain GnRH and pituitary gonadotropins. In addition, GnIH also appears to be involved in the regulation of feeding, growth, stress response, heart function and social behavior. These actions are mediated via G protein-coupled GnIH receptors (GnIH-Rs), of which two different subtypes, GPR147 and GPR74, have been described to date. With around 30,000 species, fish represent more than one-half of the total number of recognized living vertebrate species. In addition to this impressive biological diversity, fish are relevant because they include model species with scientific and clinical interest as well as many exploited species with economic importance. In spite of this, the study of GnIH and its physiological effects on reproduction and other physiological processes has only been approached in a few fish species, and results obtained are in some cases conflicting. In this review, we summarize the information available in the literature on GnIH sequences identified in fish, the distribution of GnIH and GnIH-Rs in central and peripheral tissues, the physiological actions of GnIH on the reproductive brain-pituitary-gonadal axis, as well as other reported effects of this neuropeptide, and existing knowledge on the regulatory mechanisms of GnIH in fish.

4.
J Comp Physiol B ; 187(8): 1057-1089, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28447151

ABSTRACT

The environment which living organisms inhabit is not constant and many factors, such as light, temperature, and food availability, display cyclic and predictable variations. To adapt to these cyclic changes, animals present biological rhythms in many of their physiological variables, timing their functions to occur when the possibility of success is greatest. Among these variables, many endocrine factors have been described as displaying rhythms in vertebrates. The aim of the present review is to provide a thorough review of the existing knowledge on the rhythms of the endocrine system of fish by examining the hormones that show rhythmicity, how environmental factors control these rhythms and the variation in the responses of the endocrine system depending on the time of the day. We mainly focused on the hypothalamic-pituitary axis, which can be considered as the master axis of the endocrine system of vertebrates and regulates a great variety of functions, including reproduction, growth, metabolism, energy homeostasis, stress response, and osmoregulation. In addition, the rhythms of other hormones, such as melatonin and the factors, produced in the gastrointestinal system of fish are reviewed.


Subject(s)
Circadian Rhythm/physiology , Endocrine System/physiology , Animals , Fishes , Gastrointestinal Tract/physiology , Melatonin/physiology
5.
Article in English | MEDLINE | ID: mdl-28188883

ABSTRACT

The seasonally changing photoperiod controls the timing of reproduction in most fish species, however, the transduction of this photoperiodic information to the reproductive axis is still unclear. This study explored the potential role of two candidate neuropeptide systems, gonadotropin-inhibitory hormone (Gnih) and kisspeptin, as mediators between the pineal organ (a principle transducer of photoperiodic information) and reproductive axis in male European sea bass, Dicentrarchus labrax. Two seven-day experiments of pinealectomy (Px) were performed, in March (end of reproductive season) and August (resting season). Effects of Px and season on the brain expression of gnih (sbgnih) and its receptor (sbgnihr), kisspeptins (kiss1, kiss2) and their receptors (kissr2, kissr3) and gonadotropin-releasing hormone (gnrh1, gnrh2, gnrh3) and the main brain receptor (gnrhr-II-2b) genes, plasma melatonin levels and locomotor activity rhythms were examined. Results showed that Px reduced night-time plasma melatonin levels. Gene expression analyses demonstrated a sensitivity of the Gnih system to Px in March, with a reduction in sbgnih in the mid-hindbrain, a region with bilateral connections to the pineal organ. In August, kiss2 levels increased in Px animals but not in controls. Significant differences in expression were observed for diencephalic sbgnih, sbgnihr, kissr3 and tegmental gnrh2 between seasons. Recordings of locomotor activity following surgery revealed a change from light-synchronised to free-running rhythmic behavior. Altogether, the Gnih and Kiss2 sensitivity to Px and seasonal differences observed for Gnih and its receptor, Gnrh2, and the receptor for Kiss2 (Kissr3), suggested they could be mediators involved in the relay between environment and seasonal reproduction.


Subject(s)
Gonadotropin-Releasing Hormone/genetics , Kisspeptins/genetics , Neuropeptides/genetics , Pyrrolidonecarboxylic Acid/analogs & derivatives , Reproduction/genetics , Animals , Bass/genetics , Bass/physiology , Bass/surgery , Locomotion , Male , Neurosecretory Systems/surgery , Pineal Gland/physiology , Pineal Gland/surgery , Reproduction/physiology
6.
Article in English | MEDLINE | ID: mdl-28109838

ABSTRACT

The role of rearing temperature on fish development, sex differentiation and puberty has been largely addressed, but the impact of water temperature on the ontogeny of the main neuroendocrine systems controlling reproduction has received little attention. Gonadotropin-inhibitory hormone (GnIH) has been shown to act on gonadotropin-releasing hormone (GnRH) neurons and on the pituitary to inhibit gonadotropin release and synthesis in vertebrates, including sea bass, Dicentrarchus labrax. In the present study we investigated the effects of rearing temperature during the thermosensitive period (5-60days post-fertilization, dpf) on the expression of the GnIH gene (gnih) and its receptor (gnihr). Animals were maintained under two different conditions, low temperature (LT, 15°C) or high temperature (HT, 21°C), throughout the thermosensitive period and sampled from 5 to 360dpf at mid-light (ML) and mid-dark (MD). Our results showed significant effects of temperature on gnih and gnihr expression during the thermosensitive period, with higher transcript levels under LT condition. Some differences were also evident after the completion of the sex differentiation process. Moreover, we revealed daily variations in the developmental expression of gnih and gnihr, with higher diurnal mRNA levels at early stages (until 25dpf), and a shift to higher nocturnal expression levels at 300-360dpf, which corresponded with the beginning of the winter (reproductive season). To the best of our knowledge, this work represents the first study reporting the effects of rearing temperature on the transcription of gnih system genes, as well as its daily variations during the development of a fish species.


Subject(s)
Bass/physiology , Fish Proteins/metabolism , Gene Expression Regulation, Developmental , Hypothalamic Hormones/metabolism , Receptors, Neuropeptide/metabolism , Sex Determination Processes , Thermotolerance , Animals , Aquaculture , Bass/growth & development , Circadian Rhythm , Female , Fish Proteins/genetics , Hot Temperature , Hypothalamic Hormones/genetics , Larva/growth & development , Larva/metabolism , Male , RNA, Messenger/metabolism , Receptors, Neuropeptide/genetics , Sexual Maturation , Zygote/growth & development , Zygote/metabolism
7.
PLoS One ; 11(10): e0165494, 2016.
Article in English | MEDLINE | ID: mdl-27788270

ABSTRACT

Gonadotropin-inhibitory hormone (GnIH) is a neurohormone that suppresses reproduction by acting at both the brain and pituitary levels. In addition to the brain, GnIH may also be produced in gonads and can regulate steroidogenesis and gametogenesis. However, the function of GnIH in gonadal physiology has received little attention in fish. The main objective of this study was to evaluate the effects of peripheral sbGnih-1 and sbGnih-2 implants on gonadal development and steroidogenesis during the reproductive cycle of male sea bass (Dicentrarchus labrax). Both Gnihs decreased testosterone (T) and 11-ketotestosterone (11-KT) plasma levels in November and December (early- and mid-spermatogenesis) but did not affect plasma levels of the progestin 17,20ß-dihydroxy-4-pregnen-3-one (DHP). In February (spermiation), fish treated with sbGnih-1 and sbGnih-2 exhibited testicles with abundant type A spermatogonia and partial spermatogenesis. In addition, we determined the effects of peripheral Gnih implants on plasma follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) levels, as well as on brain and pituitary expression of the main reproductive hormone genes and their receptors during the spermiation period (February). Treatment with sbGnih-2 increased brain gnrh2, gnih, kiss1r and gnihr transcript levels. Whereas, both Gnihs decreased lhbeta expression and plasma Lh levels, and sbGnih-1 reduced plasmatic Fsh. Finally, through behavioral recording we showed that Gnih implanted animals exhibited a significant increase in diurnal activity from late spermatogenic to early spermiogenic stages. Our results indicate that Gnih may regulate the reproductive axis of sea bass acting not only on brain and pituitary hormones but also on gonadal physiology and behavior.


Subject(s)
Bass/metabolism , Hypothalamic Hormones/pharmacology , Locomotion/drug effects , Steroids/biosynthesis , Testis/drug effects , Testis/metabolism , Amino Acid Sequence , Animals , Gametogenesis/drug effects , Gene Expression Regulation, Developmental/drug effects , Gonadotropins/blood , Hypothalamic Hormones/chemistry , Male , Pituitary Gland/drug effects , Pituitary Gland/metabolism , Testis/growth & development
8.
Biol Reprod ; 94(6): 121, 2016 06.
Article in English | MEDLINE | ID: mdl-26984999

ABSTRACT

Gonadotropin-inhibitory hormone (GnIH) inhibits gonadotropin synthesis and release from the pituitary of birds and mammals. However, the physiological role of orthologous GnIH peptides on the reproductive axis of fish is still uncertain, and their actions on the main neuroendocrine systems controlling reproduction (i.e., GnRHs, kisspeptins) have received little attention. In a recent study performed in the European sea bass, we cloned a cDNA encoding a precursor polypeptide that contained C-terminal MPMRFamide (sbGnIH-1) and MPQRFamide (sbGnIH-2) peptide sequences, developed a specific antiserum against sbGnIH-2, and characterized its central and pituitary GnIH projections in this species. In this study, we analyzed the effects of intracerebroventricular injection of sbGnIH-1 and sbGnIH-2 on brain and pituitary expression of reproductive hormone genes (gnrh1, gnrh2, gnrh3, kiss1, kiss2, gnih, lhbeta, fshbeta), and their receptors (gnrhr II-1a, gnrhr II-2b, kiss1r, kiss2r, and gnihr) as well as on plasma Fsh and Lh levels. In addition, we determined the effects of GnIH on pituitary somatotropin (Gh) expression. The results obtained revealed the inhibitory role of sbGnIH-2 on brain gnrh2, kiss1, kiss2, kiss1r, gnih, and gnihr transcripts and on pituitary fshbeta, lhbeta, gh, and gnrhr-II-1a expression, whereas sbGnIH-1 only down-regulated brain gnrh1 expression. However, at different doses, central administration of both sbGnIH-1 and sbGnIH-2 decreased Lh plasma levels. Our work represents the first study reporting the effects of centrally administered GnIH in fish and provides evidence of the differential actions of sbGnIH-1 and sbGnIH-2 on the reproductive axis of sea bass, the main inhibitory role being exerted by the sbGnIH-2 peptide.


Subject(s)
Bass/physiology , Hypothalamic Hormones/physiology , Hypothalamo-Hypophyseal System/physiology , Reproduction , Animals , Gene Expression , Gonadotropins/blood , Injections, Intraventricular , Male
9.
J Comp Neurol ; 524(1): 176-98, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26105807

ABSTRACT

Gonadotropin-inhibitory hormone (GnIH) is a neuropeptide that suppresses reproduction in birds and mammals by inhibiting GnRH and gonadotropin secretion. GnIH orthologs with a C-terminal LPXRFamide (LPXRFa) motif have been identified in teleost fish. Although recent work also suggests its role in fish reproduction, studies are scarce and controversial, and have mainly focused on cyprinids. In this work we cloned a full-length cDNA encoding an LPXRFa precursor in the European sea bass, Dicentrarchus labrax. In contrast to other teleosts, the sea bass LPXRFa precursor contains only two putative RFamide peptides, termed sbLPXRFa1 and sbLPXRFa2. sblpxrfa transcripts were expressed predominantly in the olfactory bulbs/telencephalon, diencephalon, midbrain tegmentum, retina, and gonads. We also developed a specific antiserum against sbLPXRFa2, which revealed sbLPXRFa-immunoreactive (ir) perikarya in the olfactory bulbs-terminal nerve, ventral telencephalon, caudal preoptic area, dorsal mesencephalic tegmentum, and rostral rhombencephalon. These sbLPXRFa-ir cells profusely innervated the preoptic area, hypothalamus, optic tectum, semicircular torus, and caudal midbrain tegmentum, but conspicuous projections also reached the olfactory bulbs, ventral/dorsal telencephalon, habenula, ventral thalamus, pretectum, rostral midbrain tegmentum, posterior tuberculum, reticular formation, and viscerosensory lobe. The retina, pineal, vascular sac, and pituitary were also targets of sbLPXRFa-ir cells. In the pituitary, this innervation was observed close to follicle-stimulating hormone (FSH), luteinizing hormone (LH) and growth hormone (GH) cells. Tract-tracing retrograde labeling suggests that telencephalic and preoptic sbLPXRFa cells might represent the source of pituitary innervation. The immunohistochemical distribution of sbLPXRFa cells and fibers suggest that LPXRFa peptides might be involved in some functions as well as reproduction, such as feeding, growth, and behavior.


Subject(s)
Bass/metabolism , Peptide Hormones/metabolism , Amino Acid Sequence , Animals , Antibodies/metabolism , Bass/anatomy & histology , Bass/genetics , Brain/anatomy & histology , Brain/metabolism , Cloning, Molecular/methods , Female , Immunohistochemistry/methods , Male , Molecular Sequence Data , Peptide Hormones/genetics , Peptide Hormones/immunology , Phylogeny , Pituitary Gland/anatomy & histology , Pituitary Gland/metabolism , Sequence Homology, Amino Acid
10.
BMC Genomics ; 14: 566, 2013 Aug 20.
Article in English | MEDLINE | ID: mdl-23957753

ABSTRACT

BACKGROUND: Atlantic halibut (Hippoglossus hippoglossus) is a high-value, niche market species for cold-water marine aquaculture. Production of monosex female stocks is desirable in commercial production since females grow faster and mature later than males. Understanding the sex determination mechanism and developing sex-associated markers will shorten the time for the development of monosex female production, thus decreasing the costs of farming. RESULTS: Halibut juveniles were masculinised with 17 α-methyldihydrotestosterone (MDHT) and grown to maturity. Progeny groups from four treated males were reared and sexed. Two of these groups (n = 26 and 70) consisted of only females, while the other two (n = 30 and 71) contained balanced sex ratios (50% and 48% females respectively). DNA from parents and offspring from the two mixed-sex families were used as a template for Restriction-site Associated DNA (RAD) sequencing. The 648 million raw reads produced 90,105 unique RAD-tags. A linkage map was constructed based on 5703 Single Nucleotide Polymorphism (SNP) markers and 7 microsatellites consisting of 24 linkage groups, which corresponds to the number of chromosome pairs in this species. A major sex determining locus was mapped to linkage group 13 in both families. Assays for 10 SNPs with significant association with phenotypic sex were tested in both population data and in 3 additional families. Using a variety of machine-learning algorithms 97% correct classification could be obtained with the 3% of errors being phenotypic males predicted to be females. CONCLUSION: Altogether our findings support the hypothesis that the Atlantic halibut has an XX/XY sex determination system. Assays are described for sex-associated DNA markers developed from the RAD sequencing analysis to fast track progeny testing and implement monosex female halibut production for an immediate improvement in productivity. These should also help to speed up the inclusion of neomales derived from many families to maintain a larger effective population size and ensure long-term improvement through selective breeding.


Subject(s)
Flounder/genetics , Sex Determination Analysis/methods , Animals , Female , Fisheries , Genetic Linkage , Genetic Markers , Male , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Restriction Mapping , Sequence Analysis, DNA , Sex Chromosomes/genetics , Sex Determination Processes , Synteny
SELECTION OF CITATIONS
SEARCH DETAIL
...