Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
J Med Chem ; 59(10): 4926-47, 2016 05 26.
Article in English | MEDLINE | ID: mdl-27077528

ABSTRACT

Transient receptor potential vanilloid 3 (TRPV3) is a Ca(2+)- and Na(+)-permeable channel with a unique expression pattern. TRPV3 is found in both neuronal and non-neuronal tissues, including dorsal root ganglia, spinal cord, and keratinocytes. Recent studies suggest that TRPV3 may play a role in inflammation, pain sensation, and skin disorders. TRPV3 studies have been challenging, in part due to a lack of research tools such as selective antagonists. Herein, we provide the first detailed report on the development of potent and selective TRPV3 antagonists featuring a pyridinyl methanol moiety. Systematic optimization of pharmacological, physicochemical, and ADME properties of original lead 5a resulted in identification of a novel and selective TRPV3 antagonist 74a, which demonstrated a favorable preclinical profile in two different models of neuropathic pain as well as in a reserpine model of central pain.


Subject(s)
Cyclobutanes/chemical synthesis , Cyclobutanes/pharmacology , Pyridines/chemical synthesis , Pyridines/pharmacology , TRPV Cation Channels/antagonists & inhibitors , Calcium/metabolism , Cyclobutanes/chemistry , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Molecular Conformation , Pyridines/chemistry , Structure-Activity Relationship , TRPV Cation Channels/metabolism
2.
J Pharmacol Exp Ther ; 343(1): 233-45, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22815533

ABSTRACT

Blockade of the histamine H(3) receptor (H(3)R) enhances central neurotransmitter release, making it an attractive target for the treatment of cognitive disorders. Here, we present in vitro and in vivo pharmacological profiles for the H(3)R antagonist 2-[4'-((3aR,6aR)-5-methyl-hexahydro-pyrrolo[3,4-b]pyrrol-1-yl)-biphenyl-4-yl]-2H-pyridazin-3-one (ABT-288). ABT-288 is a competitive antagonist with high affinity and selectivity for human and rat H(3)Rs (K(i) = 1.9 and 8.2 nM, respectively) that enhances the release of acetylcholine and dopamine in rat prefrontal cortex. In rat behavioral tests, ABT-288 improved acquisition of a five-trial inhibitory avoidance test in rat pups (0.001-0.03 mg/kg), social recognition memory in adult rats (0.03-0.1 mg/kg), and spatial learning and reference memory in a rat water maze test (0.1-1.0 mg/kg). ABT-288 attenuated methamphetamine-induced hyperactivity in mice. In vivo rat brain H(3)R occupancy of ABT-288 was assessed in relation to rodent doses and exposure levels in behavioral tests. ABT-288 demonstrated a number of other favorable attributes, including good pharmacokinetics and oral bioavailability of 37 to 66%, with a wide central nervous system and cardiovascular safety margin. Thus, ABT-288 is a selective H(3)R antagonist with broad procognitive efficacy in rodents and excellent drug-like properties that support its advancement to the clinical area.


Subject(s)
Cognition/drug effects , Cognition/physiology , Histamine H3 Antagonists/pharmacology , Nootropic Agents/pharmacology , Pyridazines/pharmacology , Pyrroles/pharmacology , Receptors, Histamine H3/physiology , Animals , Avoidance Learning/drug effects , Avoidance Learning/physiology , Guinea Pigs , HEK293 Cells , Histamine H3 Antagonists/chemistry , Humans , Male , Mice , Nootropic Agents/chemistry , Protein Binding/physiology , Pyridazines/chemistry , Pyrroles/chemistry , Rats , Rats, Inbred SHR , Rats, Long-Evans , Rats, Sprague-Dawley , Recognition, Psychology/drug effects , Recognition, Psychology/physiology
3.
J Pharmacol Exp Ther ; 343(1): 13-20, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22729221

ABSTRACT

There is growing evidence supporting a role for histamine H(3) receptors in the modulation of pathological pain. To further our understanding of this modulation, we examined the effects of a selective H(3) receptor antagonist, 6-((3-cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy)-N-methyl-3-pyridinecarboxamide (GSK189254), on spinal neuronal activity in neuropathic (L5 and L6 ligations) and sham rats. Systemic administration of GSK189254 (0.03-1 mg/kg i.v.) dose-dependently decreased both evoked (10-g von Frey hair for 15 s) and spontaneous firing of wide dynamic range (WDR) neurons in neuropathic, but not sham-operated, animals. The effects on spontaneous firing suggest that H(3) receptors may have a role in central sensitization and/or modulating non-evoked pain. Transection of the spinal cord (T9-T10) completely eliminated the effects (both evoked and spontaneous) of systemic GSK189254 (1 mg/kg, i.v.) on WDR neuronal firing in neuropathic rats, indicating that the descending modulatory system has an important role in the H(3)-related dampening of spinal neuronal activity. Subsequently, lesions of the locus coeruleus, or direct GSK189254 (3 and 10 nmol/0.5 µl) injections into this site, demonstrate that the locus coeruleus is a key component of the H(3) descending modulatory pathway. In summary, blockade of H(3) receptors reduces spontaneous firing as well as the responses of spinal nociceptive neurons to mechanical stimulation. This effect is in large part mediated via supraspinal sites, including the locus coeruleus, that send descending projections to modulate spinal neuronal activity.


Subject(s)
Histamine H3 Antagonists/pharmacology , Locus Coeruleus/physiology , Neuralgia/drug therapy , Neuralgia/metabolism , Neurons/metabolism , Neurons/physiology , Receptors, Histamine H3/metabolism , Spinal Cord/pathology , Animals , Benzazepines/pharmacology , Benzazepines/therapeutic use , Histamine H3 Antagonists/therapeutic use , Locus Coeruleus/drug effects , Male , Neuralgia/pathology , Neurons/drug effects , Niacinamide/analogs & derivatives , Niacinamide/pharmacology , Niacinamide/therapeutic use , Pyramidal Tracts/drug effects , Pyramidal Tracts/physiology , Rats , Rats, Sprague-Dawley , Receptors, Histamine H3/physiology , Spinal Cord/drug effects , Spinal Cord/metabolism
4.
J Pharmacol Exp Ther ; 336(1): 38-46, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20864505

ABSTRACT

H(3) antagonists increase the release of brain histamine, acetylcholine, noradrenaline, and dopamine, neurotransmitters that are known to modulate cognitive processes. The ability to release brain histamine supports the effect on attention and vigilance, but histamine also modulates other cognitive domains such as short-term and long-term memory. A number of H(3) antagonists, including 1-{3-[3-(4-chlorophenyl)propoxy]propyl}piperidine hydrochloride (BF2.649), (1R,3R)-N-ethyl-3-fluoro-3-[3-fluoro-4-(pyrrolidin-1-ylmethyl)phenyl]cyclobutane-1-carboxamide (PF-03654746), 6-[(3-cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy]-N-methyl-3-pyridinecarboxamide hydrochloride (GSK189254), MK-0249 (structure not yet disclosed), JNJ-17216498 (structure not yet disclosed), and ABT-288 (structure not yet disclosed), have advanced to the clinical area for the potential treatment of human cognitive disorders. H(3) antagonists exhibited wake-promoting effects in humans and efficacy in narcoleptic patients, indicating target engagement, but some of them were not efficacious in patients suffering from attention-deficit hyperactivity disorder and schizophrenic patients. Preclinical studies have also shown that H(3) antagonists activate intracellular signaling pathways that may improve cognitive efficacy and disease-modifying effects in Alzheimer's disease. Ongoing clinical studies will be able to determine the utility of H(3) antagonists for the treatment of cognitive disorders in humans.


Subject(s)
Alzheimer Disease/drug therapy , Cognition Disorders/drug therapy , Drug Discovery , Histamine H3 Antagonists/therapeutic use , Receptors, Histamine H3 , Alzheimer Disease/metabolism , Alzheimer Disease/psychology , Animals , Cognition Disorders/metabolism , Cognition Disorders/psychology , Drug Discovery/trends , Histamine H3 Antagonists/metabolism , Humans , Receptors, Histamine H3/metabolism , Treatment Outcome
6.
Brain Res ; 1354: 74-84, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20682302

ABSTRACT

The histamine H(3) receptor is predominantly expressed in the central nervous system and plays a role in diverse physiological mechanisms. In the present study, the effects of GSK189254, a potent and selective H(3) antagonist, were characterized in preclinical pain models in rats. Systemic GSK189254 produced dose-dependent efficacy (ED(50)=0.77 mg/kg i.p.) in a rat model of monoiodoacetate (MIA) induced osteoarthritic (OA) pain as evaluated by hindlimb grip force. The role of H(3) receptors in regulating pain perception was further demonstrated using other structurally distinct H(3) antagonists. GSK189254 also displayed efficacy in a rat surrogate model indicative of central sensitization, namely phase 2 response of formalin-induced flinching, and attenuated tactile allodynia in the spinal nerve ligation model of neuropathic pain (ED(50)=1.5mg/kg i.p.). In addition, GSK189254 reversed persistent (CFA) (ED(50)=2.1mg/kg i.p,), whereas was ineffective in acute (carrageenan) inflammatory pain. When administered intrathecally (i.t.) to the lumbar spinal cord, GSK189254 produced robust effects in relieving the OA pain (ED(50)=0.0027 mg/kg i.t.). The systemic GSK189254 effect was completely reversed by the alpha-adrenergic receptor antagonist phentolamine (i.p. and i.t.) but not by the opioid receptor antagonist naloxone (i.p.). Furthermore, the i.t. GSK189254 effect was abolished when co-administered with phentolamine (i.t.). These results suggest that the spinal cord is an important site of action for H(3) antagonism and the effect can be associated with activation of the noradrenergic system. Our data also provide support that selective H(3) antagonists may represent a class of agents for the treatment of pain disorders.


Subject(s)
Histamine H3 Antagonists/pharmacology , Neurons/drug effects , Norepinephrine/metabolism , Pain Measurement/drug effects , Pain/drug therapy , Receptors, Histamine H3/metabolism , Adrenergic alpha-Antagonists/pharmacology , Analysis of Variance , Animals , Benzazepines/pharmacology , Dose-Response Relationship, Drug , Formaldehyde , Hand Strength , Injections, Spinal , Male , Motor Activity/drug effects , Neurons/metabolism , Niacinamide/analogs & derivatives , Niacinamide/pharmacology , Pain/chemically induced , Pain/metabolism , Pain Perception/drug effects , Phentolamine/pharmacology , Rats , Rats, Sprague-Dawley
7.
Bioorg Med Chem Lett ; 20(11): 3295-300, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20457525

ABSTRACT

A series of quinoline containing histamine H(3) antagonists is reported herein. These analogs were synthesized via the Friedlander quinoline synthesis between an aminoaldehyde intermediate and a methyl ketone allowing for a wide diversity of substituents at the 2-position of the quinoline ring.


Subject(s)
Histamine H3 Antagonists/pharmacology , Quinolines/pharmacology , Animals , Humans , In Vitro Techniques , Rats
8.
Pharmacol Biochem Behav ; 95(1): 41-50, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20004681

ABSTRACT

The histamine H(4) receptor (H(4)R) is expressed primarily on cells involved in inflammation and immune responses. To determine the potential role of H(4)R in pain transmission, the effects of JNJ7777120, a potent and selective H(4) antagonist, were characterized in preclinical pain models. Administration of JNJ7777120 fully blocked neutrophil influx observed in a mouse zymosan-induced peritonitis model (ED(50)=17 mg/kg s.c., 95% CI=8.5-26) in a mast cell-dependent manner. JNJ7777120 potently reversed thermal hyperalgesia observed following intraplantar carrageenan injection of acute inflammatory pain (ED(50)=22 mg/kg i.p., 95% CI=10-35) in rats and significantly decreased the myeloperoxide activity in the carrageenan-injected paw. In contrast, no effects were produced by either H(1)R antagonist diphenhydramine, H(2)R antagonists ranitidine, or H(3)R antagonist ABT-239. JNJ7777120 also exhibited robust anti-nociceptive activity in persistent inflammatory (CFA) pain with an ED(50) of 29 mg/kg i.p. (95% CI=19-40) and effectively reversed monoiodoacetate (MIA)-induced osteoarthritic joint pain. This compound also produced dose-dependent anti-allodynic effects in the spinal nerve ligation (ED(50)=60 mg/kg) and sciatic nerve constriction injury (ED(50)=88 mg/kg) models of chronic neuropathic pain, as well as in a skin-incision model of acute post-operative pain (ED(50)=68 mg/kg). In addition, the analgesic effects of JNJ7777120 were maintained following repeated administration and were evident at the doses that did not cause neurologic deficits in rotarod test. Our results demonstrate that selective blockade of H(4) receptors in vivo produces significant anti-nociception in animal models of inflammatory and neuropathic pain.


Subject(s)
Analgesics/pharmacology , Disease Models, Animal , Inflammation/drug therapy , Peripheral Nervous System Diseases/drug therapy , Receptors, G-Protein-Coupled/antagonists & inhibitors , Analgesics/therapeutic use , Animals , Male , Mice , Mice, Inbred BALB C , Radioligand Assay , Rats , Receptors, Histamine , Receptors, Histamine H4
9.
J Med Chem ; 52(15): 4640-9, 2009 Aug 13.
Article in English | MEDLINE | ID: mdl-19588934

ABSTRACT

A new histamine H3 receptor (H3R) antagonist chemotype 1 was designed by combining key pharmacophoric elements from two different precursor structural series and then simplifying and optimizing the resulting combined structural features. First, analogues were made based on a previously identified conessine-based H3R antagonist series. While the first analogues 11 and 15 showed no antagonistic activity to H3R, the mere addition of a key moiety found in the reference compound 7 (ABT-239) elevated the series to high potency at H3R. The hybrid structure (16b) was judged too synthetically demanding to enable an extensive SAR study, thus forcing a strategy to simplify the chemical structure. The resulting (3aR,6aR)-5-alkyl-1-aryl-octahydropyrrolo[3,4-b]pyrrole series proved to be highly potent, as exemplified by 17a having a human H3 K(i) of 0.54 nM, rat H3 K(i) of 4.57 nM, and excellent pharmacokinetics (PK) profile in rats (oral bioavailability of 39% and t(1/2) of 2.4 h).


Subject(s)
Histamine H3 Antagonists/chemical synthesis , Pyrroles/chemical synthesis , Animals , Drug Design , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/metabolism , Histamine H3 Antagonists/pharmacokinetics , Histamine H3 Antagonists/pharmacology , Humans , Pyrroles/pharmacokinetics , Pyrroles/pharmacology , Rats , Structure-Activity Relationship
10.
J Med Chem ; 51(22): 7094-8, 2008 Nov 27.
Article in English | MEDLINE | ID: mdl-18983139

ABSTRACT

cis-4-(Piperazin-1-yl)-5,6,7a,8,9,10,11,11a-octahydrobenzofuro[2,3-h]quinazolin-2-amine, 4 (A-987306) is a new histamine H(4) antagonist. The compound is potent in H(4) receptor binding assays (rat H(4), K(i) = 3.4 nM, human H(4) K(i) = 5.8 nM) and demonstrated potent functional antagonism in vitro at human, rat, and mouse H(4) receptors in cell-based FLIPR assays. Compound 4 also demonstrated H(4) antagonism in vivo in mice, blocking H(4)-agonist induced scratch responses, and showed anti-inflammatory activity in mice in a peritonitis model. Most interesting was the high potency and efficacy of this compound in blocking pain responses, where it showed an ED(50) of 42 mumol/kg (ip) in a rat post-carrageenan thermal hyperalgesia model of inflammatory pain.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Benzofurans/pharmacology , Hyperalgesia/drug therapy , Pain/prevention & control , Quinazolines/pharmacology , Receptors, G-Protein-Coupled/antagonists & inhibitors , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Benzofurans/chemical synthesis , Benzofurans/chemistry , Carrageenan , Disease Models, Animal , Drug Design , Drug Evaluation, Preclinical , Humans , Hyperalgesia/chemically induced , Ligands , Mice , Molecular Structure , Pain/physiopathology , Peritonitis/drug therapy , Quinazolines/chemical synthesis , Quinazolines/chemistry , Rats , Receptors, Histamine , Receptors, Histamine H4 , Stereoisomerism , Structure-Activity Relationship
11.
J Med Chem ; 51(20): 6547-57, 2008 Oct 23.
Article in English | MEDLINE | ID: mdl-18817367

ABSTRACT

A new structural class of histamine H 4 receptor antagonists (6-14) was designed based on rotationally restricted 2,4-diaminopyrimidines. Series compounds showed potent and selective in vitro H 4 antagonism across multiple species, good CNS penetration, improved PK properties compared to reference H 4 antagonists, functional H 4 antagonism in cellular and in vivo pharmacological assays, and in vivo anti-inflammatory and antinociceptive efficacy. One compound, 10 (A-943931), combined the best features of the series in a single molecule and is an excellent tool compound to probe H 4 pharmacology. It is a potent H 4 antagonist in functional assays across species (FLIPR Ca (2+) flux, K b < 5.7 nM), has high (>190x) selectivity for H 4, and combines good PK in rats and mice (t 1/2 of 2.6 and 1.6 h, oral bioavailability of 37% and 90%) with anti-inflammatory activity (ED 50 = 37 micromol/kg, mouse) and efficacy in pain models (thermal hyperalgesia, ED 50 = 72 micromol/kg, rat).


Subject(s)
Amines/chemistry , Anti-Inflammatory Agents/chemical synthesis , Histamine Antagonists/chemical synthesis , Histamine Antagonists/therapeutic use , Pain/drug therapy , Pyrimidines/chemical synthesis , Receptors, Histamine/metabolism , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/classification , Anti-Inflammatory Agents/therapeutic use , Disease Models, Animal , Histamine Antagonists/chemistry , Histamine Antagonists/classification , Ligands , Mice , Molecular Structure , Pyrimidines/chemistry , Pyrimidines/classification , Pyrimidines/therapeutic use , Rats
12.
J Med Chem ; 51(20): 6571-80, 2008 Oct 23.
Article in English | MEDLINE | ID: mdl-18811133

ABSTRACT

A series of 2-aminopyrimidines was synthesized as ligands of the histamine H4 receptor (H4R). Working in part from a pyrimidine hit that was identified in an HTS campaign, SAR studies were carried out to optimize the potency, which led to compound 3, 4- tert-butyl-6-(4-methylpiperazin-1-yl)pyrimidin-2-ylamine. We further studied this compound by systematically modifying the core pyrimidine moiety, the methylpiperazine at position 4, the NH2 at position 2, and positions 5 and 6 of the pyrimidine ring. The pyrimidine 6 position benefited the most from this optimization, especially in analogs in which the 6- tert-butyl was replaced with aromatic and secondary amine moieties. The highlight of the optimization campaign was compound 4, 4-[2-amino-6-(4-methylpiperazin-1-yl)pyrimidin-4-yl]benzonitrile, which was potent in vitro and was active as an anti-inflammatory agent in an animal model and had antinociceptive activity in a pain model, which supports the potential of H 4R antagonists in pain.


Subject(s)
Histamine Antagonists/chemical synthesis , Histamine Antagonists/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Receptors, Histamine/metabolism , Animals , Biomarkers , Histamine Antagonists/chemistry , Humans , Hyperplasia/chemically induced , Hyperplasia/prevention & control , Ligands , Locomotion/drug effects , Mice , Molecular Structure , Pyrimidines/chemistry , Rats , Structure-Activity Relationship , Substrate Specificity
13.
J Med Chem ; 51(17): 5423-30, 2008 Sep 11.
Article in English | MEDLINE | ID: mdl-18683917

ABSTRACT

The naturally occurring alkaloid, conessine (6), was discovered to bind to histamine H3 receptors in a radioligand-based high-throughput screen. Conessine displayed high affinity at both rat and human H3 receptors (pKi = 7.61 and 8.27) and generally high selectivity against other sites, including histamine receptors H1, H2, and H4. Conessine was found to efficiently penetrate the CNS and reach very high brain concentrations. Although the very slow CNS clearance and strong binding to adrenergic receptors discouraged focus on conessine itself for further development, its potency and novel steroid-based skeleton motivated further chemical investigation. Modification based on introducing diversity at the 3-nitrogen position generated a new series of H3 antagonists with higher in vitro potency, improved target selectivity, and more favorable drug-like properties. One optimized analogue (13c) was examined in detail and was found to be efficacious in animal behavioral model of cognition.


Subject(s)
Alkaloids/pharmacokinetics , Histamine Antagonists/pharmacokinetics , Receptors, Histamine H3/drug effects , Alkaloids/chemistry , Alkaloids/pharmacology , Animals , Behavior, Animal/drug effects , Brain/metabolism , Brain Chemistry , Cognition/drug effects , Histamine Antagonists/chemistry , Histamine Antagonists/pharmacology , Humans , Radioligand Assay , Rats
14.
Assay Drug Dev Technol ; 6(3): 339-49, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18593375

ABSTRACT

Guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) binding assays were established and utilized as a reliable and high-capacity functional assay for determining antagonist and inverse agonist pharmacological parameters of novel histamine H(3) ligands, at the recombinant human H(3) receptor. [(35)S]GTPgammaS binding assays were performed with membranes prepared from human embryonic kidney 293 cells stably expressing the full-length (445 amino acids) human H(3) receptor isoform, at approximately 1 pmol/mg of protein. Utilizing robotic liquid handling, assay filtration, and scintillation counting in a 96-well format, concentration-response curves were determined for up to 40 compounds per assay. The imidazole-containing H(3) receptor antagonist ciproxifan and the non-imidazole antagonist ABT-239 inhibited (R)-alpha-methylhistamine (RAMH)-stimulated [(35)S]GTPgammaS binding in a competitive manner, and negative logarithm of the dissociation equilibrium constant (pK(b)) values determined for nearly 200 structurally diverse H(3) antagonists were very similar to the respective negative logarithm of the equilibrium inhibition constant values from N-alpha-[(3)H]methylhistamine competition binding assays. H(3) antagonists also concentration-dependently decreased basal [(35)S]GTPgammaS binding, thereby displaying inverse agonism at the constitutively active H(3) receptor. At maximally effective concentrations, non-imidazole H(3) antagonists inhibited basal [(35)S]GTPgammaS binding by approximately 20%. For over 100 of these antagonists, negative logarithm of the 50% effective concentration values for inverse agonism were very similar to the respective pK(b) values. Both H(3) receptor agonist-dependent and -independent (constitutive) [(35)S]GTPgammaS binding were sensitive to changes in assay concentrations of sodium, magnesium, and the guanine nucleotide GDP; however, the potency of ABT-239 for inhibition of RAMH-stimulated [(35)S]GTPgammaS binding was not significantly affected. These robust and reliable [(35)S]GTPgammaS binding assays have become one of the important tools in our pharmacological analysis and development of novel histamine H(3) receptor antagonists/inverse agonists.


Subject(s)
Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Histamine Agonists/pharmacology , Histamine H3 Antagonists/pharmacology , Receptors, Histamine H3/drug effects , Sulfur Radioisotopes , Benzofurans/pharmacology , Cell Line , Drug Inverse Agonism , Humans , Ligands , Methylhistamines/pharmacology , Pyrrolidines/pharmacology
15.
Bioorg Med Chem Lett ; 18(1): 355-9, 2008 Jan 01.
Article in English | MEDLINE | ID: mdl-18077160

ABSTRACT

Structure-activity relationships (SAR) were analyzed within a library of diverse yet simple compounds prepared as histamine H3 antagonists. The libraries were constructed with a variety of low molecular weight pyrrolidines, selected from (R)-2-methylpyrrolidine, (S)-2-methylpyrrolidine, and pyrrolidine.


Subject(s)
Histamine H3 Antagonists/chemistry , Histamine H3 Antagonists/pharmacology , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , Animals , Humans , Kinetics , Rats , Structure-Activity Relationship
16.
J Med Chem ; 50(22): 5439-48, 2007 Nov 01.
Article in English | MEDLINE | ID: mdl-17918921

ABSTRACT

A new structural series of histamine H3 receptor antagonist was developed. The new compounds are based on a quinoline core, appended with a required basic aminoethyl moiety, and with potency- and property-modulating heterocyclic substituents. The analogs have nanomolar and subnanomolar potency for the rat and human H3R in various in vitro assays, including radioligand competition binding as well as functional tests of H3 receptor-mediated calcium mobilization and GTPgammaS binding. The compounds possessed favorable drug-like properties, such as good PK, CNS penetration, and moderate protein binding across species. Several compounds were found to be efficacious in animal behavioral models of cognition and attention. Further studies on the pharmaceutic properties of this series of quinolines discovered a potential problem with photochemical instability, an issue which contributed to the discontinuation of this series from further development.


Subject(s)
Pyrazoles/chemical synthesis , Pyrimidines/chemical synthesis , Quinolines/chemical synthesis , Receptors, Histamine H3/metabolism , Animals , Attention/drug effects , Avoidance Learning/drug effects , Blood Proteins/metabolism , Blood-Brain Barrier/metabolism , Calcium/metabolism , Cell Line , Cognition/drug effects , Dogs , Drug Inverse Agonism , Drug Stability , Haplorhini , Humans , Protein Binding , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Quinolines/pharmacokinetics , Quinolines/pharmacology , Radioligand Assay , Rats , Rats, Inbred SHR , Recognition, Psychology/drug effects , Social Behavior , Stereoisomerism , Structure-Activity Relationship , Tissue Distribution
17.
J Pharmacol Exp Ther ; 323(3): 888-98, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17855474

ABSTRACT

In this article, we pharmacologically characterized two naturally occurring human histamine H3 receptor (hH3R) isoforms, hH3R(445) and hH3R(365). These abundantly expressed splice variants differ by a deletion of 80 amino acids in the intracellular loop 3. In this report, we show that the hH3R(365) is differentially expressed compared with the hH3R(445) and has a higher affinity and potency for H3R agonists and conversely a lower potency and affinity for H3R inverse agonists. Furthermore, we show a higher constitutive signaling of the hH3R(365) compared with the hH3R(445) in both guanosine-5'-O-(3-[35S]thio) triphosphate binding and cAMP assays, likely explaining the observed differences in hH3R pharmacology of the two isoforms. Because H3R ligands are beneficial in animal models of obesity, epilepsy, and cognitive diseases such as Alzheimer's disease and attention deficit hyperactivity disorder and currently entered clinical trails, these differences in H3R pharmacology of these two isoforms are of great importance for a detailed understanding of the action of H3R ligands.


Subject(s)
Alternative Splicing , Amino Acids , Receptors, Histamine H3 , Sequence Deletion , Amino Acid Sequence , Amino Acids/genetics , Animals , Binding, Competitive , Brain/metabolism , Cell Line, Tumor , Cell Membrane/metabolism , Cloning, Molecular , Cyclic AMP/metabolism , GTP-Binding Proteins/metabolism , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Humans , Ligands , Molecular Sequence Data , Protein Binding , Protein Isoforms , Radioligand Assay , Rats , Receptors, Histamine H3/chemistry , Receptors, Histamine H3/genetics , Receptors, Histamine H3/metabolism , Reverse Transcriptase Polymerase Chain Reaction
18.
J Med Chem ; 49(25): 7450-65, 2006 Dec 14.
Article in English | MEDLINE | ID: mdl-17149874

ABSTRACT

The goal of this study was to identify a structurally distinct D(4)-selective agonist with superior oral bioavailability to our first-generation clinical candidate 1a (ABT-724) for the potential treatment of erectile dysfunction. Arylpiperazines such as (heteroarylmethyl)piperazine 1a, benzamide 2, and acetamides such as 3a,b exhibit poor oral bioavailability. Structure-activity relationship (SAR) studies with the arylpiperidine template provided potent partial agonists such as 4d and 5k that demonstrated no improvement in oral bioavailability. Further optimization with the (N-oxy-2-pyridinyl)piperidine template led to the discovery of compound 6b (ABT-670), which exhibited excellent oral bioavailability in rat, dog, and monkey (68%, 85%, and 91%, respectively) with comparable efficacy, safety, and tolerability to 1a. The N-oxy-2-pyridinyl moiety not only provided the structural motif required for agonist function but also reduced metabolism rates. The SAR study leading to the discovery of 6b is described herein.


Subject(s)
Benzamides/chemical synthesis , Cyclic N-Oxides/chemical synthesis , Erectile Dysfunction/drug therapy , Receptors, Dopamine D4/agonists , Action Potentials , Administration, Oral , Animals , Benzamides/chemistry , Benzamides/pharmacology , Biological Availability , Cell Line , Cyclic N-Oxides/chemistry , Cyclic N-Oxides/pharmacology , Dogs , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/physiology , Haplorhini , Humans , In Vitro Techniques , Male , Patch-Clamp Techniques , Purkinje Fibers/drug effects , Purkinje Fibers/physiology , Rats , Structure-Activity Relationship
19.
J Med Chem ; 49(23): 6726-31, 2006 Nov 16.
Article in English | MEDLINE | ID: mdl-17154503

ABSTRACT

Adenosine kinase (AK) is an enzyme responsible for converting endogenous adenosine (ADO) to adenosine monophosphate (AMP) in an adenosine triphosphate- (ATP-) dependent manner. The structure of AK consists of two domains, the first a large alpha/beta Rossmann-like nucleotide binding domain that forms the ATP binding site, and a smaller mixed alpha/beta domain, which, in combination with the larger domain, forms the ADO binding site and the site of phosphoryl transfer. AK inhibitors have been under investigation as antinociceptive, antiinflammatory, and anticonvulsant as well as antiinfective agents. In this work, we report the structures of AK in complex with two classes of inhibitors: the first, ADO-like, and the second, a novel alkynylpyrimidine series. The two classes of structures, which contain structurally similar substituents, reveal distinct binding modes in which the AK structure accommodates the inhibitor classes by a 30 degrees rotation of the small domain relative to the large domain. This change in binding mode stabilizes an open and a closed intermediate structural state and provide structural insight into the transition required for catalysis. This results in a significant rearrangement of both the protein active site and the orientation of the alkynylpyrimidine ligand when compared to the observed orientation of nucleosidic inhibitors or substrates.


Subject(s)
Adenosine Kinase/antagonists & inhibitors , Adenosine Kinase/chemistry , Enzyme Inhibitors/chemistry , Morpholines/chemistry , Pyrimidines/chemistry , Tubercidin/analogs & derivatives , Animals , Binding Sites , Crystallography, X-Ray , Humans , Models, Molecular , Molecular Structure , Protein Binding , Protein Conformation , Toxoplasma/enzymology , Tubercidin/chemistry
20.
J Cardiovasc Pharmacol ; 48(5): 199-206, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17110801

ABSTRACT

Terodiline and tolterodine are drugs used to treat urinary incontinence. Terodiline was removed from the market in 1991 for proarrhythmia, whereas tolterodine has a generally benign clinical cardiac profile. To assess differences in the electrophysiologic actions of these drugs, we evaluated their effects on hERG current (HEK cells) and cardiac Purkinje fiber repolarization. The IC50 for hERG block (37 degrees C) by tolterodine was 9.6 nM and by terodiline was 375 nM, values near or below clinical concentrations. Tolterodine elicited concentration-dependent prolongation of the action potential duration (APD90). In contrast, terodiline depressed the action potential plateau and induced triangulation without affecting APD90. The triangulation ratios (normalized ratio of APD50 over APD90) for terodiline were 0.94 and 0.59 for 1.0 and 10 microM and for tolterodine, were 0.99 and 0.97 at 7 and 70 nM. In summary, tolterodine, a potent hERG blocker, has a benign clinical cardiac profile at therapeutic concentrations that may be due to its lack of triangulation, as well as extensive plasma protein binding. However, at supratherapeutic concentrations, preclinical data predict risk of QT prolongation. These data suggest that hERG block and triangulation are among multiple factors that must be considered in preclinical cardiac safety assessments.


Subject(s)
Benzhydryl Compounds/pharmacology , Butylamines/pharmacology , Cresols/pharmacology , Heart/drug effects , Phenylpropanolamine/pharmacology , Action Potentials/drug effects , Action Potentials/physiology , Animals , Cell Line , Dogs , Drug Evaluation, Preclinical , Heart/physiology , Tolterodine Tartrate
SELECTION OF CITATIONS
SEARCH DETAIL