Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
BMC Infect Dis ; 24(1): 181, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341566

ABSTRACT

BACKGROUND: An increasing number of studies have described new and persistent symptoms and conditions as potential post-acute sequelae of SARS-CoV-2 infection (PASC). However, it remains unclear whether certain symptoms or conditions occur more frequently among persons with SARS-CoV-2 infection compared with those never infected with SARS-CoV-2. We compared the occurrence of specific COVID-associated symptoms and conditions as potential PASC 31- to 150-day following a SARS-CoV-2 test among adults and children with positive and negative test results. METHODS: We conducted a retrospective cohort study using electronic health record (EHR) data from 43 PCORnet sites participating in a national COVID-19 surveillance program. This study included 3,091,580 adults (316,249 SARS-CoV-2 positive; 2,775,331 negative) and 675,643 children (62,131 positive; 613,512 negative) who had a SARS-CoV-2 laboratory test during March 1, 2020-May 31, 2021 documented in their EHR. We used logistic regression to calculate the odds of having a symptom and Cox models to calculate the risk of having a newly diagnosed condition associated with a SARS-CoV-2 positive test. RESULTS: After adjustment for baseline covariates, hospitalized adults and children with a positive test had increased odds of being diagnosed with ≥ 1 symptom (adults: adjusted odds ratio[aOR], 1.17[95% CI, 1.11-1.23]; children: aOR, 1.18[95% CI, 1.08-1.28]) or shortness of breath (adults: aOR, 1.50[95% CI, 1.38-1.63]; children: aOR, 1.40[95% CI, 1.15-1.70]) 31-150 days following a SARS-CoV-2 test compared with hospitalized individuals with a negative test. Hospitalized adults with a positive test also had increased odds of being diagnosed with ≥ 3 symptoms or fatigue compared with those testing negative. The risks of being newly diagnosed with type 1 or type 2 diabetes (adjusted hazard ratio[aHR], 1.25[95% CI, 1.17-1.33]), hematologic disorders (aHR, 1.19[95% CI, 1.11-1.28]), or respiratory disease (aHR, 1.44[95% CI, 1.30-1.60]) were higher among hospitalized adults with a positive test compared with those with a negative test. Non-hospitalized adults with a positive test also had higher odds or increased risk of being diagnosed with certain symptoms or conditions. CONCLUSIONS: Patients with SARS-CoV-2 infection, especially those who were hospitalized, were at higher risk of being diagnosed with certain symptoms and conditions after acute infection.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Adult , Child , Humans , COVID-19/diagnosis , SARS-CoV-2 , Post-Acute COVID-19 Syndrome , Retrospective Studies
2.
Pediatrics ; 153(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38225804

ABSTRACT

OBJECTIVES: Vaccination reduces the risk of acute coronavirus disease 2019 (COVID-19) in children, but it is less clear whether it protects against long COVID. We estimated vaccine effectiveness (VE) against long COVID in children aged 5 to 17 years. METHODS: This retrospective cohort study used data from 17 health systems in the RECOVER PCORnet electronic health record program for visits after vaccine availability. We examined both probable (symptom-based) and diagnosed long COVID after vaccination. RESULTS: The vaccination rate was 67% in the cohort of 1 037 936 children. The incidence of probable long COVID was 4.5% among patients with COVID-19, whereas diagnosed long COVID was 0.8%. Adjusted vaccine effectiveness within 12 months was 35.4% (95 CI 24.5-44.7) against probable long COVID and 41.7% (15.0-60.0) against diagnosed long COVID. VE was higher for adolescents (50.3% [36.6-61.0]) than children aged 5 to 11 (23.8% [4.9-39.0]). VE was higher at 6 months (61.4% [51.0-69.6]) but decreased to 10.6% (-26.8% to 37.0%) at 18-months. CONCLUSIONS: This large retrospective study shows moderate protective effect of severe acute respiratory coronavirus 2 vaccination against long COVID. The effect is stronger in adolescents, who have higher risk of long COVID, and wanes over time. Understanding VE mechanism against long COVID requires more study, including electronic health record sources and prospective data.


Subject(s)
COVID-19 , Post-Acute COVID-19 Syndrome , Adolescent , Child , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Retrospective Studies , Prospective Studies , Vaccine Efficacy
3.
PLoS One ; 19(1): e0285093, 2024.
Article in English | MEDLINE | ID: mdl-38236918

ABSTRACT

The COVID-19 pandemic prompted immense work on the investigation of the SARS-CoV-2 virus. Rapid, accurate, and consistent interpretation of generated data is thereby of fundamental concern. Ontologies-structured, controlled, vocabularies-are designed to support consistency of interpretation, and thereby to prevent the development of data silos. This paper describes how ontologies are serving this purpose in the COVID-19 research domain, by following principles of the Open Biological and Biomedical Ontology (OBO) Foundry and by reusing existing ontologies such as the Infectious Disease Ontology (IDO) Core, which provides terminological content common to investigations of all infectious diseases. We report here on the development of an IDO extension, the Virus Infectious Disease Ontology (VIDO), a reference ontology covering viral infectious diseases. We motivate term and definition choices, showcase reuse of terms from existing OBO ontologies, illustrate how ontological decisions were motivated by relevant life science research, and connect VIDO to the Coronavirus Infectious Disease Ontology (CIDO). We next use terms from these ontologies to annotate selections from life science research on SARS-CoV-2, highlighting how ontologies employing a common upper-level vocabulary may be seamlessly interwoven. Finally, we outline future work, including bacteria and fungus infectious disease reference ontologies currently under development, then cite uses of VIDO and CIDO in host-pathogen data analytics, electronic health record annotation, and ontology conflict-resolution projects.


Subject(s)
Biological Ontologies , COVID-19 , Communicable Diseases , Virus Diseases , Humans , Pandemics , Vocabulary, Controlled , COVID-19/epidemiology
4.
Adv Anat Pathol ; 31(2): 96-104, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38179997

ABSTRACT

In this review, we highlight and contextualize emerging morphologic prognostic and predictive factors in renal cell carcinoma. We focus on clear cell renal cell carcinoma (ccRCC), the most common histologic subtype. Our understanding of the molecular characterization of ccRCC has dramatically improved in the last decade. Herein, we highlight how these discoveries have laid the foundation for new approaches to prognosis and therapeutic decision-making for patients with ccRCC. We explore the clinical relevance of common mutations, established gene expression signatures, intratumoral heterogeneity, sarcomatoid/rhabdoid morphology and PD-L1 expression, and discuss their impact on predicting response to therapy.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , Kidney Neoplasms/pathology , Prognosis , B7-H1 Antigen
5.
medRxiv ; 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37808803

ABSTRACT

Objective: Vaccination reduces the risk of acute COVID-19 in children, but it is less clear whether it protects against long COVID. We estimated vaccine effectiveness (VE) against long COVID in children aged 5-17 years. Methods: This retrospective cohort study used data from 17 health systems in the RECOVER PCORnet electronic health record (EHR) Program for visits between vaccine availability, and October 29, 2022. Conditional logistic regression was used to estimate VE against long COVID with matching on age group (5-11, 12-17) and time period and adjustment for sex, ethnicity, health system, comorbidity burden, and pre-exposure health care utilization. We examined both probable (symptom-based) and diagnosed long COVID in the year following vaccination. Results: The vaccination rate was 56% in the cohort of 1,037,936 children. The incidence of probable long COVID was 4.5% among patients with COVID-19, while diagnosed long COVID was 0.7%. Adjusted vaccine effectiveness within 12 months was 35.4% (95 CI 24.5 - 44.5) against probable long COVID and 41.7% (15.0 - 60.0) against diagnosed long COVID. VE was higher for adolescents 50.3% [36.3 - 61.0]) than children aged 5-11 (23.8% [4.9 - 39.0]). VE was higher at 6 months (61.4% [51.0 - 69.6]) but decreased to 10.6% (-26.8 - 37.0%) at 18-months. Discussion: This large retrospective study shows a moderate protective effect of SARS-CoV-2 vaccination against long COVID. The effect is stronger in adolescents, who have higher risk of long COVID, and wanes over time. Understanding VE mechanism against long COVID requires more study, including EHR sources and prospective data. Article Summary: Vaccination against COVID-19 has a protective effect against long COVID in children and adolescents. The effect wanes over time but remains significant at 12 months. What's Known on This Subject: Vaccines reduce the risk and severity of COVID-19 in children. There is evidence for reduced long COVID risk in adults who are vaccinated, but little information about similar effects for children and adolescents, who have distinct forms of long COVID. What This Study Adds: Using electronic health records from US health systems, we examined large cohorts of vaccinated and unvaccinated patients <18 years old and show that vaccination against COVID-19 is associated with reduced risk of long COVID for at least 12 months. Contributors' Statement: Drs. Hanieh Razzaghi and Charles Bailey conceptualized and designed the study, supervised analyses, drafted the initial manuscript, and critically reviewed and revised the manuscript.Drs. Christopher Forrest and Yong Chen designed the study and critically reviewed and revised the manuscript.Ms. Kathryn Hirabayashi, Ms. Andrea Allen, and Dr. Qiong Wu conducted analyses, and critically reviewed and revised the manuscript.Drs. Suchitra Rao, H Timothy Bunnell, Elizabeth A. Chrischilles, Lindsay G. Cowell, Mollie R. Cummins, David A. Hanauer, Benjamin D. Horne, Carol R. Horowitz, Ravi Jhaveri, Susan Kim, Aaron Mishkin, Jennifer A. Muszynski, Susanna Nagie, Nathan M. Pajor, Anuradha Paranjape, Hayden T. Schwenk, Marion R. Sills, Yacob G. Tedla, David A. Williams, and Ms. Miranda Higginbotham critically reviewed and revised the manuscript.All authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work. Authorship statement: Authorship has been determined according to ICMJE recommendations.

6.
Article in English | MEDLINE | ID: mdl-37388275

ABSTRACT

Analysis of an individual's immunoglobulin or T cell receptor gene repertoire can provide important insights into immune function. High-quality analysis of adaptive immune receptor repertoire sequencing data depends upon accurate and relatively complete germline sets, but current sets are known to be incomplete. Established processes for the review and systematic naming of receptor germline genes and alleles require specific evidence and data types, but the discovery landscape is rapidly changing. To exploit the potential of emerging data, and to provide the field with improved state-of-the-art germline sets, an intermediate approach is needed that will allow the rapid publication of consolidated sets derived from these emerging sources. These sets must use a consistent naming scheme and allow refinement and consolidation into genes as new information emerges. Name changes should be minimised, but, where changes occur, the naming history of a sequence must be traceable. Here we outline the current issues and opportunities for the curation of germline IG/TR genes and present a forward-looking data model for building out more robust germline sets that can dovetail with current established processes. We describe interoperability standards for germline sets, and an approach to transparency based on principles of findability, accessibility, interoperability, and reusability.

7.
Clin Lung Cancer ; 24(4): 305-312, 2023 06.
Article in English | MEDLINE | ID: mdl-37055337

ABSTRACT

BACKGROUND: Despite recommendations for molecular testing irrespective of patient characteristics, differences exist in receipt of molecular testing for oncogenic drivers amongst metastatic non-small cell lung cancer (mNSCLC) patients. Exploration into these differences and their effects on treatment is needed to identify opportunities for improvement. PATIENTS AND METHODS: We conducted a retrospective cohort study of adult patients diagnosed with mNSCLC between 2011 and 2018 using PCORnet's Rapid Cycle Research Project dataset (n = 3600). Log-binomial, Cox proportional hazards (PH), and time-varying Cox regression models were used to ascertain whether molecular testing was received, and time from diagnosis to molecular testing and/or initial systemic treatment in the context of patient age, sex, race/ethnicity, and multiple comorbidities status. RESULTS: The majority of patients in this cohort were ≤ 65 years of age (median [25th, 75th]: 64 [57, 71]), male (54.3%), non-Hispanic white individuals (81.6%), with > 2 comorbidities in addition to mNSCLC (54.1%). About half the cohort received molecular testing (49.9%). Patients who received molecular testing had a 59% higher probability of initial systemic treatment than patients who were yet to receive testing. Multiple comorbidity status was positively associated with receipt of molecular testing (RR, 1.27; 95% CI 1.08, 1.49). CONCLUSION: Receipt of molecular testing in academic centers was associated with earlier initiation of systemic treatment. This finding underscores the need to increase molecular testing rates amongst mNSCLC patients during a clinically relevant period. Further studies to validate these findings in community centers are warranted.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Adult , Humans , Male , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/diagnosis , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Retrospective Studies , Ethnicity , Molecular Diagnostic Techniques
8.
Curr Otorhinolaryngol Rep ; 11(1): 44-61, 2023.
Article in English | MEDLINE | ID: mdl-36743978

ABSTRACT

Purpose of Review: The goal of this narrative review is to educate clinicians regarding the foundational concepts, efficacy, and future directions of therapeutic vaccines for human papillomavirus (HPV)-mediated cancers. Recent Findings: Therapeutic HPV vaccines deliver tumor antigens to stimulate an immune response to eliminate tumor cells. Vaccine antigen delivery platforms are diverse and include DNA, RNA, peptides, proteins, viral vectors, microbial vectors, and antigen-presenting cells. Randomized, controlled trials have demonstrated that therapeutic HPV vaccines are efficacious in patients with cervical intraepithelial neoplasia. In patients with HPV-mediated malignancies, evidence of efficacy is limited. However, numerous ongoing studies evaluating updated therapeutic HPV vaccines in combination with immune checkpoint inhibition and other therapies exhibit significant promise. Summary: Therapeutic vaccines for HPV-mediated malignancies retain a strong biological rationale, despite their limited efficacy to date. Investigators anticipate they will be most effectively used in combination with other regimens, such as immune checkpoint inhibition.

9.
Methods Mol Biol ; 2453: 439-446, 2022.
Article in English | MEDLINE | ID: mdl-35622338

ABSTRACT

AIRR-seq data sets are usually large and require specialized analysis methods and software tools. A typical Illumina MiSeq sequencing run generates 20-30 million 2 × 300 bp paired-end sequence reads, which roughly corresponds to 15 GB of sequence data to be processed. Other platforms like NextSeq, which is useful in projects where the full V gene is not needed, create about 400 million 2 × 150 bp paired-end reads. Because of the size of the data sets, the analysis can be computationally expensive, particularly the early analysis steps like preprocessing and gene annotation that process the majority of the sequence data. A standard desktop PC may take 3-5 days of constant processing for a single MiSeq run, so dedicated high-performance computational resources may be required.VDJServer provides free access to high-performance computing (HPC) at the Texas Advanced Computing Center (TACC) through a graphical user interface (Christley et al. Front Immunol 9:976, 2018). VDJServer is a cloud-based analysis portal for immune repertoire sequence data that provides access to a suite of tools for a complete analysis workflow, including modules for preprocessing and quality control of sequence reads, V(D)J gene assignment, repertoire characterization, and repertoire comparison. Furthermore, VDJServer has parallelized execution for tools such as IgBLAST, so more compute resources are utilized as the size of the input data grows. Analysis that takes days on a desktop PC might take only a few hours on VDJServer. VDJServer is a free, publicly available, and open-source licensed resource. Here, we describe the workflow for performing immune repertoire analysis on VDJServer's high-performance computing.


Subject(s)
Computing Methodologies , Software , High-Throughput Nucleotide Sequencing , Workflow
10.
Methods Mol Biol ; 2453: 447-476, 2022.
Article in English | MEDLINE | ID: mdl-35622339

ABSTRACT

High-throughput sequencing of adaptive immune receptor repertoires (AIRR, i.e., IG and TR ) has revolutionized the ability to study the adaptive immune response via large-scale experiments. Since 2009, AIRR sequencing (AIRR-seq) has been widely applied to survey the immune state of individuals (see "The AIRR Community Guide to Repertoire Analysis" chapter for details). One of the goals of the AIRR Community is to make the resulting AIRR-seq data FAIR (Findable, Accessible, Interoperable, and Reusable) (Wilkinson et al. Sci Data 3:1-9, 2016), with a primary goal of making it easy for the research community to reuse AIRR-seq data (Breden et al. Front Immunol 8:1418, 2017; Scott and Breden. Curr Opin Syst Biol 24:71-77, 2020). The basis for this is the MiAIRR data standard (Rubelt et al. Nat Immunol 18:1274-1278, 2017). For long-term preservation, it is recommended that researchers store their sequence read data in an INSDC repository. At the same time, the AIRR Community has established the AIRR Data Commons (Christley et al. Front Big Data 3:22, 2020), a distributed set of AIRR-compliant repositories that store the critically important annotated AIRR-seq data based on the MiAIRR standard, making the data findable, interoperable, and, because the data are annotated, more valuable in its reuse. Here, we build on the other AIRR Community chapters and illustrate how these principles and standards can be incorporated into AIRR-seq data analysis workflows. We discuss the importance of careful curation of metadata to ensure reproducibility and facilitate data sharing and reuse, and we illustrate how data can be shared via the AIRR Data Commons.


Subject(s)
Information Dissemination , Research Design , High-Throughput Nucleotide Sequencing , Humans , Information Dissemination/methods , Reproducibility of Results , Workflow
11.
MMWR Morb Mortal Wkly Rep ; 71(14): 517-523, 2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35389977

ABSTRACT

Cardiac complications, particularly myocarditis and pericarditis, have been associated with SARS-CoV-2 (the virus that causes COVID-19) infection (1-3) and mRNA COVID-19 vaccination (2-5). Multisystem inflammatory syndrome (MIS) is a rare but serious complication of SARS-CoV-2 infection with frequent cardiac involvement (6). Using electronic health record (EHR) data from 40 U.S. health care systems during January 1, 2021-January 31, 2022, investigators calculated incidences of cardiac outcomes (myocarditis; myocarditis or pericarditis; and myocarditis, pericarditis, or MIS) among persons aged ≥5 years who had SARS-CoV-2 infection, stratified by sex (male or female) and age group (5-11, 12-17, 18-29, and ≥30 years). Incidences of myocarditis and myocarditis or pericarditis were calculated after first, second, unspecified, or any (first, second, or unspecified) dose of mRNA COVID-19 (BNT162b2 [Pfizer-BioNTech] or mRNA-1273 [Moderna]) vaccines, stratified by sex and age group. Risk ratios (RR) were calculated to compare risk for cardiac outcomes after SARS-CoV-2 infection to that after mRNA COVID-19 vaccination. The incidence of cardiac outcomes after mRNA COVID-19 vaccination was highest for males aged 12-17 years after the second vaccine dose; however, within this demographic group, the risk for cardiac outcomes was 1.8-5.6 times as high after SARS-CoV-2 infection than after the second vaccine dose. The risk for cardiac outcomes was likewise significantly higher after SARS-CoV-2 infection than after first, second, or unspecified dose of mRNA COVID-19 vaccination for all other groups by sex and age (RR 2.2-115.2). These findings support continued use of mRNA COVID-19 vaccines among all eligible persons aged ≥5 years.


Subject(s)
COVID-19 , Myocarditis , Pericarditis , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Female , Humans , Male , Myocarditis/epidemiology , Pericarditis/epidemiology , Pericarditis/etiology , RNA, Messenger , SARS-CoV-2 , United States/epidemiology , Vaccination/adverse effects
12.
JAMA Netw Open ; 5(2): e2147053, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35119459

ABSTRACT

Importance: New symptoms and conditions can develop following SARS-CoV-2 infection. Whether they occur more frequently among persons with SARS-CoV-2 infection compared with those without is unclear. Objective: To compare the prevalence of new diagnoses of select symptoms and conditions between 31 and 150 days after testing among persons who tested positive vs negative for SARS-CoV-2. Design, Setting, and Participants: This cohort study analyzed aggregated electronic health record data from 40 health care systems, including 338 024 persons younger than 20 years and 1 790 886 persons aged 20 years or older who were tested for SARS-CoV-2 during March to December 2020 and who had medical encounters between 31 and 150 days after testing. Main Outcomes and Measures: International Statistical Classification of Diseases, Tenth Revision, Clinical Modification codes were used to capture new symptoms and conditions that were recorded 31 to 150 days after a SARS-CoV-2 test but absent in the 18 months to 7 days prior to testing. The prevalence of new symptoms and conditions was compared between persons with positive and negative SARS-CoV-2 tests stratified by age (20 years or older and young than 20 years) and care setting (nonhospitalized, hospitalized, or hospitalized and ventilated). Results: A total of 168 701 persons aged 20 years or older and 26 665 younger than 20 years tested positive for SARS-CoV-2, and 1 622 185 persons aged 20 years or older and 311 359 younger than 20 years tested negative. Shortness of breath was more common among persons with a positive vs negative test result among hospitalized patients (≥20 years: prevalence ratio [PR], 1.89 [99% CI, 1.79-2.01]; <20 years: PR, 1.72 [99% CI, 1.17-2.51]). Shortness of breath was also more common among nonhospitalized patients aged 20 years or older with a positive vs negative test result (PR, 1.09 [99% CI, 1.05-1.13]). Among hospitalized persons aged 20 years or older, the prevalence of new fatigue (PR, 1.35 [99% CI, 1.27-1.44]) and type 2 diabetes (PR, 2.03 [99% CI, 1.87-2.19]) was higher among those with a positive vs a negative test result. Among hospitalized persons younger than 20 years, the prevalence of type 2 diabetes (PR, 2.14 [99% CI, 1.13-4.06]) was higher among those with a positive vs a negative test result; however, the prevalence difference was less than 1%. Conclusions and Relevance: In this cohort study, among persons hospitalized after a positive SARS-CoV-2 test result, diagnoses of certain symptoms and conditions were higher than among those with a negative test result. Health care professionals should be aware of symptoms and conditions that may develop after SARS-CoV-2 infection, particularly among those hospitalized after diagnosis.


Subject(s)
COVID-19/physiopathology , Symptom Assessment/statistics & numerical data , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , COVID-19/epidemiology , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Prevalence , SARS-CoV-2 , Socioeconomic Factors , Time Factors , Young Adult
13.
Urol Int ; 106(7): 693-699, 2022.
Article in English | MEDLINE | ID: mdl-34525470

ABSTRACT

PURPOSE: Renal cysts are a frequent incidental finding on cross-sectional radiographic imaging. While most cysts are indolent, individuals with such cysts are frequently monitored for interval growth and potential malignant transformation, which is ultimately rare. In this study, we aimed to assess patients' values and preferences (believes and attitudes) about renal cysts. METHODS: We deployed a cross-sectional survey to a random sample of patients with a diagnosis of renal cysts who were identified by billing code and self-identification. We collected data about demographics, insurance status, family history and overall health, and characteristics of patients with renal cysts. We performed a binary regression analysis (adjusted for age, gender, family history of cancer and kidney disease, and treatment plan for renal cysts) to determine anxiety predictors in patients with renal cysts. RESULTS: We included 301 respondents in whom billing code and self-identification corresponded; of these, 138 had renal cysts and 163 did not. In an adjusted regression analysis, there was a suggestion that a clear management plan (OR = 0.49, 95% CI [0.22-1.11]) (p value 0.08) may be associated with less anxiety and a family history of renal disease may be associated with more anxiety (OR = 1.94 [0.76-4.94]) (p value 0.17). Family history of cancer also did not significantly predict anxiety (OR = 0.54 [0.24-1.19]) (p value 0.13). All these results were not statistically significant and had wide confidence intervals of the effect estimates make the results imprecise. CONCLUSION: Findings of this pilot study suggest a clear management plan for the renal cyst(s) management may be associated with a lower level of anxiety, thereby by emphasizing the importance of good communication, patient engagement and evidence-based guidance. More definitive, adequately powered studies are needed to evaluate this finding further. In addition, further studies exploring differences in imaging practices, patient symptomatology and patient engagement by different provider types would be insightful. Ultimately, tools to improve shared decision-making are needed to provide more patient-centered care.


Subject(s)
Cysts , Kidney Diseases, Cystic , Kidney Neoplasms , Cross-Sectional Studies , Cysts/diagnostic imaging , Humans , Kidney Diseases, Cystic/diagnostic imaging , Kidney Diseases, Cystic/pathology , Kidney Neoplasms/diagnostic imaging , Pilot Projects , Surveys and Questionnaires
15.
J Biomed Semantics ; 12(1): 13, 2021 07 18.
Article in English | MEDLINE | ID: mdl-34275487

ABSTRACT

BACKGROUND: Effective response to public health emergencies, such as we are now experiencing with COVID-19, requires data sharing across multiple disciplines and data systems. Ontologies offer a powerful data sharing tool, and this holds especially for those ontologies built on the design principles of the Open Biomedical Ontologies Foundry. These principles are exemplified by the Infectious Disease Ontology (IDO), a suite of interoperable ontology modules aiming to provide coverage of all aspects of the infectious disease domain. At its center is IDO Core, a disease- and pathogen-neutral ontology covering just those types of entities and relations that are relevant to infectious diseases generally. IDO Core is extended by disease and pathogen-specific ontology modules. RESULTS: To assist the integration and analysis of COVID-19 data, and viral infectious disease data more generally, we have recently developed three new IDO extensions: IDO Virus (VIDO); the Coronavirus Infectious Disease Ontology (CIDO); and an extension of CIDO focusing on COVID-19 (IDO-COVID-19). Reflecting the fact that viruses lack cellular parts, we have introduced into IDO Core the term acellular structure to cover viruses and other acellular entities studied by virologists. We now distinguish between infectious agents - organisms with an infectious disposition - and infectious structures - acellular structures with an infectious disposition. This in turn has led to various updates and refinements of IDO Core's content. We believe that our work on VIDO, CIDO, and IDO-COVID-19 can serve as a model for yielding greater conformance with ontology building best practices. CONCLUSIONS: IDO provides a simple recipe for building new pathogen-specific ontologies in a way that allows data about novel diseases to be easily compared, along multiple dimensions, with data represented by existing disease ontologies. The IDO strategy, moreover, supports ontology coordination, providing a powerful method of data integration and sharing that allows physicians, researchers, and public health organizations to respond rapidly and efficiently to current and future public health crises.


Subject(s)
Biological Ontologies/statistics & numerical data , COVID-19/prevention & control , Communicable Disease Control/statistics & numerical data , Communicable Diseases/therapy , Computational Biology/statistics & numerical data , SARS-CoV-2/isolation & purification , COVID-19/epidemiology , COVID-19/virology , Communicable Disease Control/methods , Communicable Diseases/epidemiology , Communicable Diseases/transmission , Computational Biology/methods , Data Mining/methods , Data Mining/statistics & numerical data , Epidemics , Humans , Information Dissemination/methods , Public Health/methods , Public Health/statistics & numerical data , SARS-CoV-2/physiology , Semantics
17.
Front Immunol ; 12: 624230, 2021.
Article in English | MEDLINE | ID: mdl-33868241

ABSTRACT

Cervical cancer is the fourth most common cancer and fourth leading cause of cancer death among women worldwide. In low Human Development Index settings, it ranks second. Screening and surveillance involve the cytology-based Papanicolaou (Pap) test and testing for high-risk human papillomavirus (hrHPV). The Pap test has low sensitivity to detect precursor lesions, while a single hrHPV test cannot distinguish a persistent infection from one that the immune system will naturally clear. Furthermore, among women who are hrHPV-positive and progress to high-grade cervical lesions, testing cannot identify the ~20% who would progress to cancer if not treated. Thus, reliable detection and treatment of cancers and precancers requires routine screening followed by frequent surveillance among those with past abnormal or positive results. The consequence is overtreatment, with its associated risks and complications, in screened populations and an increased risk of cancer in under-screened populations. Methods to improve cervical cancer risk assessment, particularly assays to predict regression of precursor lesions or clearance of hrHPV infection, would benefit both populations. Here we show that women who have lower risk results on follow-up testing relative to index testing have evidence of enhanced T cell clonal expansion in the index cervical cytology sample compared to women who persist with higher risk results from index to follow-up. We further show that a machine learning classifier based on the index sample T cells predicts this transition to lower risk with 95% accuracy (19/20) by leave-one-out cross-validation. Using T cell receptor deep sequencing and machine learning, we identified a biophysicochemical motif in the complementarity-determining region 3 of T cell receptor ß chains whose presence predicts this transition. While these results must still be tested on an independent cohort in a prospective study, they suggest that this approach could improve cervical cancer screening by helping distinguish women likely to spontaneously regress from those at elevated risk of progression to cancer. The advancement of such a strategy could reduce surveillance frequency and overtreatment in screened populations and improve the delivery of screening to under-screened populations.


Subject(s)
Alphapapillomavirus/immunology , Early Detection of Cancer , Genes, T-Cell Receptor beta , Papanicolaou Test , Papillomavirus Infections/diagnosis , Precancerous Conditions/diagnosis , T-Lymphocytes/immunology , Uterine Cervical Neoplasms/diagnosis , Vaginal Smears , Adult , Alphapapillomavirus/genetics , Alphapapillomavirus/pathogenicity , Complementarity Determining Regions/genetics , Female , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Human Papillomavirus DNA Tests , Humans , Machine Learning , Middle Aged , Papillomavirus Infections/immunology , Papillomavirus Infections/virology , Precancerous Conditions/immunology , Precancerous Conditions/virology , Predictive Value of Tests , Proof of Concept Study , Reproducibility of Results , Risk Assessment , Risk Factors , T-Lymphocytes/virology , Transcriptome , Uterine Cervical Neoplasms/immunology , Uterine Cervical Neoplasms/virology
18.
Front Immunol ; 12: 640725, 2021.
Article in English | MEDLINE | ID: mdl-33777034

ABSTRACT

The adaptive immune system in vertebrates has evolved to recognize non-self antigens, such as proteins expressed by infectious agents and mutated cancer cells. T cells play an important role in antigen recognition by expressing a diverse repertoire of antigen-specific receptors, which bind epitopes to mount targeted immune responses. Recent advances in high-throughput sequencing have enabled the routine generation of T-cell receptor (TCR) repertoire data. Identifying the specific epitopes targeted by different TCRs in these data would be valuable. To accomplish that, we took advantage of the ever-increasing number of TCRs with known epitope specificity curated in the Immune Epitope Database (IEDB) since 2004. We compared seven metrics of sequence similarity to determine their power to predict if two TCRs have the same epitope specificity. We found that a comprehensive k-mer matching approach produced the best results, which we have implemented into TCRMatch, an openly accessible tool (http://tools.iedb.org/tcrmatch/) that takes TCR ß-chain CDR3 sequences as an input, identifies TCRs with a match in the IEDB, and reports the specificity of each match. We anticipate that this tool will provide new insights into T cell responses captured in receptor repertoire and single cell sequencing experiments and will facilitate the development of new strategies for monitoring and treatment of infectious, allergic, and autoimmune diseases, as well as cancer.


Subject(s)
Algorithms , Datasets as Topic , Epitopes, T-Lymphocyte , Receptors, Antigen, T-Cell , T-Cell Antigen Receptor Specificity , Humans , Internet
19.
Nat Mach Intell ; 3(11): 936-944, 2021 Nov.
Article in English | MEDLINE | ID: mdl-37396030

ABSTRACT

Adaptive immune receptor repertoires (AIRR) are key targets for biomedical research as they record past and ongoing adaptive immune responses. The capacity of machine learning (ML) to identify complex discriminative sequence patterns renders it an ideal approach for AIRR-based diagnostic and therapeutic discovery. To date, widespread adoption of AIRR ML has been inhibited by a lack of reproducibility, transparency, and interoperability. immuneML (immuneml.uio.no) addresses these concerns by implementing each step of the AIRR ML process in an extensible, open-source software ecosystem that is based on fully specified and shareable workflows. To facilitate widespread user adoption, immuneML is available as a command-line tool and through an intuitive Galaxy web interface, and extensive documentation of workflows is provided. We demonstrate the broad applicability of immuneML by (i) reproducing a large-scale study on immune state prediction, (ii) developing, integrating, and applying a novel deep learning method for antigen specificity prediction, and (iii) showcasing streamlined interpretability-focused benchmarking of AIRR ML.

20.
Cancer ; 127(6): 850-864, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33270909

ABSTRACT

BACKGROUND: Despite the significant societal burden of human papillomavirus (HPV)-associated cancers, clinical screening interventions for HPV-associated noncervical cancers are not available. Blood-based biomarkers may help close this gap in care. METHODS: Five databases were searched, 5687 articles were identified, and 3631 unique candidate titles and abstracts were independently reviewed by 2 authors; 702 articles underwent a full-text review. Eligibility criteria included the assessment of a blood-based biomarker within a cohort or case-control study. RESULTS: One hundred thirty-seven studies were included. Among all biomarkers assessed, HPV-16 E seropositivity and circulating HPV DNA were most significantly correlated with HPV-associated cancers in comparison with cancer-free controls. In most scenarios, HPV-16 E6 seropositivity varied nonsignificantly according to tumor type, specimen collection timing, and anatomic site (crude odds ratio [cOR] for p16+ or HPV+ oropharyngeal cancer [OPC], 133.10; 95% confidence interval [CI], 59.40-298.21; cOR for HPV-unspecified OPC, 25.41; 95% CI, 8.71-74.06; cOR for prediagnostic HPV-unspecified OPC, 59.00; 95% CI, 15.39-226.25; cOR for HPV-unspecified cervical cancer, 12.05; 95% CI, 3.23-44.97; cOR for HPV-unspecified anal cancer, 73.60; 95% CI, 19.68-275.33; cOR for HPV-unspecified penile cancer, 16.25; 95% CI, 2.83-93.48). Circulating HPV-16 DNA was a valid biomarker for cervical cancer (cOR, 15.72; 95% CI, 3.41-72.57). In 3 cervical cancer case-control studies, cases exhibited unique microRNA expression profiles in comparison with controls. Other assessed biomarker candidates were not valid. CONCLUSIONS: HPV-16 E6 antibodies and circulating HPV-16 DNA are the most robustly analyzed and most promising blood-based biomarkers for HPV-associated cancers to date. Comparative validity analyses are warranted. Variations in tumor type-specific, high-risk HPV DNA prevalence according to anatomic site and world region highlight the need for biomarkers targeting more high-risk HPV types. Further investigation of blood-based microRNA expression profiling appears indicated.


Subject(s)
Antibodies, Viral/blood , Anus Neoplasms/virology , Biomarkers/blood , DNA, Viral/blood , Oropharyngeal Neoplasms/virology , Papillomavirus Infections/complications , Female , Human papillomavirus 16/isolation & purification , Humans , Uterine Cervical Neoplasms/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...