Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Glob Chang Biol ; 30(3): e17188, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38462677

ABSTRACT

Vegetation and precipitation are known to fundamentally influence each other. However, this interdependence is not fully represented in climate models because the characteristics of land surface (canopy) conductance to water vapor and CO2 are determined independently of precipitation. Working within a coupled atmosphere and land modelling framework (CAM6/CLM5; coupled Community Atmosphere Model v6/Community Land Model v5), we have developed a new theoretical approach to characterizing land surface conductance by explicitly linking its dynamic properties to local precipitation, a robust proxy for moisture available to vegetation. This will enable regional surface conductance characteristics to shift fluidly with climate change in simulations, consistent with general principles of co-evolution of vegetation and climate. Testing within the CAM6/CLM5 framework shows that climate simulations incorporating the new theory outperform current default configurations across several error metrics for core output variables when measured against observational data. In climate simulations for the end of this century the new, adaptive stomatal conductance scheme provides a revised prognosis for average and extreme temperatures over several large regions, with increased primary productivity through central and east Asia, and higher rainfall through North Africa and the Middle East. The new projections also reveal more frequent heatwaves than originally estimated for the south-eastern US and sub-Saharan Africa but less frequent heatwaves across east Europe and northeast Asia. These developments have implications for evaluating food security and risks from extreme temperatures in areas that are vulnerable to climate change.


Subject(s)
Atmosphere , Ecosystem , Forecasting , Hot Temperature , Africa South of the Sahara , Climate Change
2.
Nat Commun ; 15(1): 1885, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424076

ABSTRACT

Earth System Models (ESMs) continue to diagnose a wide range of carbon budgets for each level of global warming. Here, we present emergent constraints on the carbon budget as a function of global warming, which combine the available ESM historical simulations and future projections for a range of scenarios, with observational estimates of global warming and anthropogenic CO2 emissions to the present day. We estimate mean and likely ranges for cumulative carbon budgets for the Paris targets of 1.5 °C and 2 °C of global warming of 812 [691, 933] PgC and 1048 [881, 1216] PgC, which are more than 10% larger than the ensemble mean values from the CMIP6 models. The linearity between cumulative emissions and global warming is found to be maintained at least until 4 °C, and is consistent with an effective Transient Climate Response to Emissions (eTCRE) of 2.1 [1.8, 2.6] °C/1000PgC, from a global warming of 1.2 °C onwards.

3.
Sci Rep ; 13(1): 13487, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37596319

ABSTRACT

Afforestation and reforestation to meet 'Net Zero' emissions targets are considered a necessary policy by many countries. Their potential benefits are usually assessed through forest carbon and growth models. The implementation of vegetation demography gives scope to represent forest management and other size-dependent processes within land surface models (LSMs). In this paper, we evaluate the impact of including management within an LSM that represents demography, using both in-situ and reanalysis climate drivers at a mature, upland Sitka spruce plantation in Northumberland, UK. We compare historical simulations with fixed and variable CO2 concentrations, and with and without tree thinning implemented. Simulations are evaluated against the observed vegetation structure and carbon fluxes. Including thinning and the impact of increasing CO2 concentration ('CO2 fertilisation') gave more realistic estimates of stand-structure and physical characteristics. Historical CO2 fertilisation had a noticeable effect on the Gross Primary Productivity seasonal-diurnal cycle and contributed to approximately 7% higher stand biomass by 2018. The net effect of both processes resulted in a decrease of tree density and biomass, but an increase in tree height and leaf area index.


Subject(s)
Carbon Dioxide , Picea , Forests , Trees , Carbon , Fertilization , Demography
4.
Nature ; 592(7855): 517-523, 2021 04.
Article in English | MEDLINE | ID: mdl-33883733

ABSTRACT

Palaeorecords suggest that the climate system has tipping points, where small changes in forcing cause substantial and irreversible alteration to Earth system components called tipping elements. As atmospheric greenhouse gas concentrations continue to rise as a result of fossil fuel burning, human activity could also trigger tipping, and the impacts would be difficult to adapt to. Previous studies report low global warming thresholds above pre-industrial conditions for key tipping elements such as ice-sheet melt. If so, high contemporary rates of warming imply that exceeding these thresholds is almost inevitable, which is widely assumed to mean that we are now committed to suffering these tipping events. Here we show that this assumption may be flawed, especially for slow-onset tipping elements (such as the collapse of the Atlantic Meridional Overturning Circulation) in our rapidly changing climate. Recently developed theory indicates that a threshold may be temporarily exceeded without prompting a change of system state, if the overshoot time is short compared to the effective timescale of the tipping element. To demonstrate this, we consider transparently simple models of tipping elements with prescribed thresholds, driven by global warming trajectories that peak before returning to stabilize at a global warming level of 1.5 degrees Celsius above the pre-industrial level. These results highlight the importance of accounting for timescales when assessing risks associated with overshooting tipping point thresholds.


Subject(s)
Climate , Global Warming/prevention & control , Models, Theoretical , Animals , Human Activities , Humans , Ice Cover/chemistry , Reproducibility of Results , Risk Assessment , Time Factors , Water Movements
5.
Nat Commun ; 11(1): 5544, 2020 11 02.
Article in English | MEDLINE | ID: mdl-33139706

ABSTRACT

Carbon cycle feedbacks represent large uncertainties in climate change projections, and the response of soil carbon to climate change contributes the greatest uncertainty to this. Future changes in soil carbon depend on changes in litter and root inputs from plants and especially on reductions in the turnover time of soil carbon (τs) with warming. An approximation to the latter term for the top one metre of soil (ΔCs,τ) can be diagnosed from projections made with the CMIP6 and CMIP5 Earth System Models (ESMs), and is found to span a large range even at 2 °C of global warming (-196 ± 117 PgC). Here, we present a constraint on ΔCs,τ, which makes use of current heterotrophic respiration and the spatial variability of τs inferred from observations. This spatial emergent constraint allows us to halve the uncertainty in ΔCs,τ at 2 °C to -232 ± 52 PgC.

6.
New Phytol ; 226(6): 1622-1637, 2020 06.
Article in English | MEDLINE | ID: mdl-31916258

ABSTRACT

Land surface models (LSMs) typically use empirical functions to represent vegetation responses to soil drought. These functions largely neglect recent advances in plant ecophysiology that link xylem hydraulic functioning with stomatal responses to climate. We developed an analytical stomatal optimization model based on xylem hydraulics (SOX) to predict plant responses to drought. Coupling SOX to the Joint UK Land Environment Simulator (JULES) LSM, we conducted a global evaluation of SOX against leaf- and ecosystem-level observations. SOX simulates leaf stomatal conductance responses to climate for woody plants more accurately and parsimoniously than the existing JULES stomatal conductance model. An ecosystem-level evaluation at 70 eddy flux sites shows that SOX decreases the sensitivity of gross primary productivity (GPP) to soil moisture, which improves the model agreement with observations and increases the predicted annual GPP by 30% in relation to JULES. SOX decreases JULES root-mean-square error in GPP by up to 45% in evergreen tropical forests, and can simulate realistic patterns of canopy water potential and soil water dynamics at the studied sites. SOX provides a parsimonious way to incorporate recent advances in plant hydraulics and optimality theory into LSMs, and an alternative to empirical stress factors.


Subject(s)
Ecosystem , Xylem , Climate , Droughts , Forests , Plant Leaves , Water
7.
Curr Clim Change Rep ; 5(4): 275-281, 2019.
Article in English | MEDLINE | ID: mdl-31867156

ABSTRACT

PURPOSE OF REVIEW: Feedbacks between CO2-induced climate change and the carbon cycle are now routinely represented in the Earth System Models (ESMs) that are used to make projections of future climate change. The inconclusion of climate-carbon cycle feedbacks in climate projections is an important advance, but has added a significant new source of uncertainty. This review assesses the potential for emergent constraints to reduce the uncertainties associated with climate-carbon cycle feedbacks. RECENT FINDINGS: The emergent constraint technique involves using the full ensemble of models to find an across-ensemble relationship between an observable feature of the Earth System (such as a trend, interannual variation or change in seasonality) and an uncertain aspect of the future. Examples focussing on reducing uncertainties in future atmospheric CO2 concentration, carbon loss from tropical land under warming and CO2 fertilization of mid- and high-latitude photosynthesis are exemplars of these different types of emergent constraints. SUMMARY: The power of emergent constraints is that they use the enduring range in model projections to reduce uncertainty in the future of the real Earth System, but there are also risks that indiscriminate data-mining, and systematic model errors could yield misleading constraints. A hypothesis-driven theory-led approach can overcome these risks and also reveal the true promise of emergent constraints-not just as ways to reduce uncertainty in future climate change but also to catalyse advances in our understanding of the Earth System.

8.
Emerg Top Life Sci ; 3(2): 221-231, 2019 May 10.
Article in English | MEDLINE | ID: mdl-33523155

ABSTRACT

We are in a period of relatively rapid climate change. This poses challenges for individual species and threatens the ecosystem services that humanity relies upon. Temperature is a key stressor. In a warming climate, individual organisms may be able to shift their thermal optima through phenotypic plasticity. However, such plasticity is unlikely to be sufficient over the coming centuries. Resilience to warming will also depend on how fast the distribution of traits that define a species can adapt through other methods, in particular through redistribution of the abundance of variants within the population and through genetic evolution. In this paper, we use a simple theoretical 'trait diffusion' model to explore how the resilience of a given species to climate change depends on the initial trait diversity (biodiversity), the trait diffusion rate (mutation rate), and the lifetime of the organism. We estimate theoretical dangerous rates of continuous global warming that would exceed the ability of a species to adapt through trait diffusion, and therefore lead to a collapse in the overall productivity of the species. As the rate of adaptation through intraspecies competition and genetic evolution decreases with species lifetime, we find critical rates of change that also depend fundamentally on lifetime. Dangerous rates of warming vary from 1°C per lifetime (at low trait diffusion rate) to 8°C per lifetime (at high trait diffusion rate). We conclude that rapid climate change is liable to favour short-lived organisms (e.g. microbes) rather than longer-lived organisms (e.g. trees).

9.
Nature ; 563(7729): E10-E15, 2018 11.
Article in English | MEDLINE | ID: mdl-30382204
10.
Nat Commun ; 9(1): 2938, 2018 08 07.
Article in English | MEDLINE | ID: mdl-30087330

ABSTRACT

Scenarios that limit global warming to below 2 °C by 2100 assume significant land-use change to support large-scale carbon dioxide (CO2) removal from the atmosphere by afforestation/reforestation, avoided deforestation, and Biomass Energy with Carbon Capture and Storage (BECCS). The more ambitious mitigation scenarios require even greater land area for mitigation and/or earlier adoption of CO2 removal strategies. Here we show that additional land-use change to meet a 1.5 °C climate change target could result in net losses of carbon from the land. The effectiveness of BECCS strongly depends on several assumptions related to the choice of biomass, the fate of initial above ground biomass, and the fossil-fuel emissions offset in the energy system. Depending on these factors, carbon removed from the atmosphere through BECCS could easily be offset by losses due to land-use change. If BECCS involves replacing high-carbon content ecosystems with crops, then forest-based mitigation could be more efficient for atmospheric CO2 removal than BECCS.

11.
New Phytol ; 218(4): 1462-1477, 2018 06.
Article in English | MEDLINE | ID: mdl-29635689

ABSTRACT

Plant temperature responses vary geographically, reflecting thermally contrasting habitats and long-term species adaptations to their climate of origin. Plants also can acclimate to fast temporal changes in temperature regime to mitigate stress. Although plant photosynthetic responses are known to acclimate to temperature, many global models used to predict future vegetation and climate-carbon interactions do not include this process. We quantify the global and regional impacts of biogeographical variability and thermal acclimation of temperature response of photosynthetic capacity on the terrestrial carbon (C) cycle between 1860 and 2100 within a coupled climate-carbon cycle model, that emulates 22 global climate models. Results indicate that inclusion of biogeographical variation in photosynthetic temperature response is most important for present-day and future C uptake, with increasing importance of thermal acclimation under future warming. Accounting for both effects narrows the range of predictions of the simulated global land C storage in 2100 across climate projections (29% and 43% globally and in the tropics, respectively). Contrary to earlier studies, our results suggest that thermal acclimation of photosynthetic capacity makes tropical and temperate C less vulnerable to warming, but reduces the warming-induced C uptake in the boreal region under elevated CO2 .


Subject(s)
Carbon/metabolism , Geography , Photosynthesis , Temperature , Carbon Dioxide/metabolism , Computer Simulation , Ecosystem , Light , Models, Theoretical , Plant Leaves/physiology , Plant Leaves/radiation effects , Soil , Time Factors
12.
Nature ; 553(7688): 319-322, 2018 01 17.
Article in English | MEDLINE | ID: mdl-29345639

ABSTRACT

Equilibrium climate sensitivity (ECS) remains one of the most important unknowns in climate change science. ECS is defined as the global mean warming that would occur if the atmospheric carbon dioxide (CO2) concentration were instantly doubled and the climate were then brought to equilibrium with that new level of CO2. Despite its rather idealized definition, ECS has continuing relevance for international climate change agreements, which are often framed in terms of stabilization of global warming relative to the pre-industrial climate. However, the 'likely' range of ECS as stated by the Intergovernmental Panel on Climate Change (IPCC) has remained at 1.5-4.5 degrees Celsius for more than 25 years. The possibility of a value of ECS towards the upper end of this range reduces the feasibility of avoiding 2 degrees Celsius of global warming, as required by the Paris Agreement. Here we present a new emergent constraint on ECS that yields a central estimate of 2.8 degrees Celsius with 66 per cent confidence limits (equivalent to the IPCC 'likely' range) of 2.2-3.4 degrees Celsius. Our approach is to focus on the variability of temperature about long-term historical warming, rather than on the warming trend itself. We use an ensemble of climate models to define an emergent relationship between ECS and a theoretically informed metric of global temperature variability. This metric of variability can also be calculated from observational records of global warming, which enables tighter constraints to be placed on ECS, reducing the probability of ECS being less than 1.5 degrees Celsius to less than 3 per cent, and the probability of ECS exceeding 4.5 degrees Celsius to less than 1 per cent.


Subject(s)
Global Warming/statistics & numerical data , Models, Theoretical , Temperature , Carbon Dioxide/analysis , Global Warming/history , History, 19th Century , History, 20th Century , History, 21st Century , Observation , Probability
14.
Nature ; 538(7626): 499-501, 2016 10 27.
Article in English | MEDLINE | ID: mdl-27680704

ABSTRACT

Uncertainties in the response of vegetation to rising atmospheric CO2 concentrations contribute to the large spread in projections of future climate change. Climate-carbon cycle models generally agree that elevated atmospheric CO2 concentrations will enhance terrestrial gross primary productivity (GPP). However, the magnitude of this CO2 fertilization effect varies from a 20 per cent to a 60 per cent increase in GPP for a doubling of atmospheric CO2 concentrations in model studies. Here we demonstrate emergent constraints on large-scale CO2 fertilization using observed changes in the amplitude of the atmospheric CO2 seasonal cycle that are thought to be the result of increasing terrestrial GPP. Our comparison of atmospheric CO2 measurements from Point Barrow in Alaska and Cape Kumukahi in Hawaii with historical simulations of the latest climate-carbon cycle models demonstrates that the increase in the amplitude of the CO2 seasonal cycle at both measurement sites is consistent with increasing annual mean GPP, driven in part by climate warming, but with differences in CO2 fertilization controlling the spread among the model trends. As a result, the relationship between the amplitude of the CO2 seasonal cycle and the magnitude of CO2 fertilization of GPP is almost linear across the entire ensemble of models. When combined with the observed trends in the seasonal CO2 amplitude, these relationships lead to consistent emergent constraints on the CO2 fertilization of GPP. Overall, we estimate a GPP increase of 37 ± 9 per cent for high-latitude ecosystems and 32 ± 9 per cent for extratropical ecosystems under a doubling of atmospheric CO2 concentrations on the basis of the Point Barrow and Cape Kumukahi records, respectively.


Subject(s)
Atmosphere/chemistry , Carbon Dioxide/analysis , Carbon Dioxide/metabolism , Climate Change , Models, Theoretical , Photosynthesis , Seasons , Uncertainty , Alaska , Carbon Cycle , Ecosystem , Hawaii
16.
Nature ; 500(7462): 327-30, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23883935

ABSTRACT

Evidence from Greenland ice cores shows that year-to-year temperature variability was probably higher in some past cold periods, but there is considerable interest in determining whether global warming is increasing climate variability at present. This interest is motivated by an understanding that increased variability and resulting extreme weather conditions may be more difficult for society to adapt to than altered mean conditions. So far, however, in spite of suggestions of increased variability, there is considerable uncertainty as to whether it is occurring. Here we show that although fluctuations in annual temperature have indeed shown substantial geographical variation over the past few decades, the time-evolving standard deviation of globally averaged temperature anomalies has been stable. A feature of the changes has been a tendency for many regions of low variability to experience increases, which might contribute to the perception of increased climate volatility. The normalization of temperature anomalies creates the impression of larger relative overall increases, but our use of absolute values, which we argue is a more appropriate approach, reveals little change. Regionally, greater year-to-year changes recently occurred in much of North America and Europe. Many climate models predict that total variability will ultimately decrease under high greenhouse gas concentrations, possibly associated with reductions in sea-ice cover. Our findings contradict the view that a warming world will automatically be one of more overall climatic variation.


Subject(s)
Climate Change , Computer Simulation , Temperature , Global Warming , Ice Cover , Seasons
17.
Nature ; 494(7437): 341-4, 2013 Feb 21.
Article in English | MEDLINE | ID: mdl-23389447

ABSTRACT

The release of carbon from tropical forests may exacerbate future climate change, but the magnitude of the effect in climate models remains uncertain. Coupled climate-carbon-cycle models generally agree that carbon storage on land will increase as a result of the simultaneous enhancement of plant photosynthesis and water use efficiency under higher atmospheric CO(2) concentrations, but will decrease owing to higher soil and plant respiration rates associated with warming temperatures. At present, the balance between these effects varies markedly among coupled climate-carbon-cycle models, leading to a range of 330 gigatonnes in the projected change in the amount of carbon stored on tropical land by 2100. Explanations for this large uncertainty include differences in the predicted change in rainfall in Amazonia and variations in the responses of alternative vegetation models to warming. Here we identify an emergent linear relationship, across an ensemble of models, between the sensitivity of tropical land carbon storage to warming and the sensitivity of the annual growth rate of atmospheric CO(2) to tropical temperature anomalies. Combined with contemporary observations of atmospheric CO(2) concentration and tropical temperature, this relationship provides a tight constraint on the sensitivity of tropical land carbon to climate change. We estimate that over tropical land from latitude 30° north to 30° south, warming alone will release 53 ± 17 gigatonnes of carbon per kelvin. Compared with the unconstrained ensemble of climate-carbon-cycle projections, this indicates a much lower risk of Amazon forest dieback under CO(2)-induced climate change if CO(2) fertilization effects are as large as suggested by current models. Our study, however, also implies greater certainty that carbon will be lost from tropical land if warming arises from reductions in aerosols or increases in other greenhouse gases.


Subject(s)
Carbon Cycle/physiology , Carbon Dioxide/metabolism , Climate Change , Models, Theoretical , Trees/metabolism , Tropical Climate , Carbon Dioxide/analysis , Cell Respiration , Photosynthesis , Rain , Temperature , Uncertainty
18.
Philos Trans A Math Phys Eng Sci ; 370(1962): 1087-99, 2012 Mar 13.
Article in English | MEDLINE | ID: mdl-22291224

ABSTRACT

A perennial question in modern weather forecasting and climate prediction is whether to invest resources in more complex numerical models or in larger ensembles of simulations. If this question is to be addressed quantitatively, then information is needed about how changes in model complexity and ensemble size will affect predictive performance. Information about the effects of ensemble size is often available, but information about the effects of model complexity is much rarer. An illustration is provided of the sort of analysis that might be conducted for the simplified case in which model complexity is judged in terms of grid resolution and ensemble members are constructed only by perturbing their initial conditions. The effects of resolution and ensemble size on the performance of climate simulations are described with a simple mathematical model, which is then used to define an optimal allocation of computational resources for a range of hypothetical prediction problems. The optimal resolution and ensemble size both increase with available resources, but their respective rates of increase depend on the values of two parameters that can be determined from a small number of simulations. The potential for such analyses to guide future investment decisions in climate prediction is discussed.

19.
Philos Trans A Math Phys Eng Sci ; 369(1938): 868-86, 2011 Mar 13.
Article in English | MEDLINE | ID: mdl-21282151

ABSTRACT

Global CO(2) emissions are understood to be the largest contributor to anthropogenic climate change, and have, to date, been highly correlated with economic output. However, there is likely to be a negative feedback between climate change and human wealth: economic growth is typically associated with an increase in CO(2) emissions and global warming, but the resulting climate change may lead to damages that suppress economic growth. This climate-economy feedback is assumed to be weak in standard climate change assessments. When the feedback is incorporated in a transparently simple model it reveals possible emergent behaviour in the coupled climate-economy system. Formulae are derived for the critical rates of growth of global CO(2) emissions that cause damped or long-term boom-bust oscillations in human wealth, thereby preventing a soft landing of the climate-economy system. On the basis of this model, historical rates of economic growth and decarbonization appear to put the climate-economy system in a potentially damaging oscillatory regime.

20.
New Phytol ; 187(3): 682-93, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20659254

ABSTRACT

*We estimate probability density functions (PDFs) for future rainfall in five regions of South America, by weighting the predictions of the 24 Coupled Model Intercomparison Archive Project 3 (CMIP3) General Circulation Models (GCMs). The models are rated according to their relative abilities to reproduce the inter-annual variability in seasonal rainfall. *The relative weighting of the climate models is updated sequentially according to Bayes' theorem, based on the biases in the mean of the predicted time-series and the distributional fit of the bias-corrected time-series. *Depending on the season and the region, we find very different rankings of the GCMs, with no single model doing well in all cases. However, in some regions and seasons, differential weighting of the models leads to significant shifts in the derived rainfall PDFs. *Using a combination of the relative model weightings for each season we have also derived a set of overall model weightings for each region that can be used to produce PDFs of forest biomass from the simulations of the Lund-Potsdam-Jena Dynamic Global Vegetation Model for managed land (LPJmL).


Subject(s)
Models, Biological , Probability , Rain , Geography , Seasons , South America , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...