Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 255: 121508, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38552487

ABSTRACT

Water treatment works have previously shown high efficiency in removing microplastics > 25 µm from raw source water. However, what is less well known is the extent to which microplastics of this size class are generated or lost within the water distribution network, particularly whether there is a greater presence in the customer tap than in the water treatment works outlet. This study focused on the presence of 21 different types of synthetic polymer particles with sizes larger than 25 µm examined through multiple rounds of sampling at outlets of water treatment works (WTW), service reservoirs (SR), and customer taps (CT) managed by seven different water companies in Britain. Nineteen different types of polymers were detected; their signature and concentration varied based on the round of sampling, the location within the water supply network, and the water company responsible for managing the supply. Among the polymers examined, polyamide (PA), polyethene terephthalate (PET), polypropylene (PP), and polystyrene (PS) were the most commonly found. Apart from PET having its highest concentration of 0.0189 microplastic per litre (MP/L) in the SR, the concentrations of the other three most frequent polymers (PS = 0.017 MP/L, PA = 0.0752 MP/L, PP= 0.1513 MP/L) were highest in the CT. The overall prevalence of this size of microplastics in the network is low, but there was a high variability of polymer types and occurrences. These spatial and temporal variations suggested that the MP in the distribution network may exist as a series of pulses. Given the presence and polymer types, the potential for some of the microplastics to originate from materials used in the water network and domestic plumbing systems cannot be ruled out. As found before, the absolute number of microplastics in the water distribution network remained extremely low.

2.
Environ Pollut ; 323: 121267, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36804882

ABSTRACT

The relationship between the ubiquitous presence of microplastics in the environment and exposure of biota needs to be better understood, particularly for vulnerable species and their habitats. In this study, we address the presence of microplastics in the riverine habitat of a threatened lamprey species (Lampetra sp.), both in habitats with protective interventions in place (designated as Special Areas of Conservation), and those without these protective interventions. By sampling both riverbed sediments and larval lamprey, we provide a direct comparison of the microplastic loadings in both, and insights into how knowledge of sediment loadings might predict biological uptake. Microplastic particles, analysed using micro-Fourier transform infrared (µFTIR) spectroscopy, were detected in all samples of lamprey larvae and paired sediment, ranging in abundance from 1.00 to 27.47 particles g-1 in dry lamprey gastrointestinal tract (GIT) tissue, and 0.40 to 105.41 particles g-1 in dry sediment. The most urbanised catchment exhibited the highest average microplastic particle count in both lamprey and sediment. Across sites, the microplastic abundance in lamprey GIT tissue was not correlated with that of the surrounding sediment, suggesting that either specific polymer types are retained or other factors such as larvae residence time within sediment patches may influence biological uptake. The most encountered polymer types in lamprey from their immediate habitat were polyurethane, polyamide, and cellulose acetate. To the best of our knowledge, this is the first study to document microplastic contamination of larval lamprey in-situ, contributing another potential stressor to the population status of a vulnerable species. This highlights where further research on the impacts of plastic contamination of freshwater environments is needed to aid conservation management of this ecologically important species.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Plastics/analysis , Lampreys , Biomass , Water Pollutants, Chemical/analysis , Larva , Environmental Monitoring , Geologic Sediments/analysis
3.
Environ Toxicol Chem ; 41(12): 3058-3069, 2022 12.
Article in English | MEDLINE | ID: mdl-36200670

ABSTRACT

Plastic litter is now pervasive in the aquatic environment. Several marine and terrestrial organisms can fragment plastic with their feeding appendages, facilitating its breakdown and generating microplastics. However, similar studies with freshwater organisms are extremely limited. We explored the interactions between the caddisfly larvae Agrypnia sp. and polylactic acid (PLA) film. The use of plastic by larvae to build their protective cases was investigated, along with their ability to fragment the plastic film as they do with leaf litter. Caddisfly consistently incorporated PLA into their cases alongside leaf material. They also used their feeding appendages to rapidly fragment PLA-forming hundreds of submillimeter-sized microplastics. Although larvae showed a preference for leaf material when constructing cases, plastic use and fragmentation still occurred when leaf material was replete, indicating that this behavior is likely to occur in natural environments that are polluted with plastics. This is thought to be the first documented evidence of active plastic modification by a freshwater invertebrate and therefore reveals a previously unidentified mechanism of plastic fragmentation and microplastic formation in freshwater. Further work is now needed to determine the extent of this behavior across freshwater taxa and the potential implications for the wider ecosystem. Environ Toxicol Chem 2022;41:3058-3069. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Plastics , Ecosystem , Larva , Insecta , Environmental Monitoring , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Fresh Water , Polyesters
SELECTION OF CITATIONS
SEARCH DETAIL
...