Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Rep ; 10(1): e15149, 2022 01.
Article in English | MEDLINE | ID: mdl-35001564

ABSTRACT

INTRODUCTION: Exercise-induced arterial hypoxemia (EIAH) has been observed in highly trained endurance athletes during near maximal exercise, which may be influenced by a histamine-mediated inflammatory response at the pulmonary capillary-alveolar membrane. In order to test this hypothesis, we examined whether the mast cell stabilizer nedocromil sodium (NS) and H1 -receptor antagonist diphenhydramine HCL (DH) would ameliorate EIAH and mitigate the drop in arterial oxyhemoglobin saturation (Sa O2 ) during intensive exercise. METHODS: Seven highly trained male cross country runners (age, 21 ± 2 years; V̇O2max , 74.7 ± 3.5 ml·kg-1 ·min-1 ) participated in the study. All subjects completed a maximal exercise treadmill test to exhaustion, followed by three 5-min constant-load exercise bouts at 70%, 80%, and 90% V̇O2max . Prior to testing, subjects received either placebo (PL), NS, or DH. RESULTS: Compared to PL, there was a significant treatment effect on Sa O2 (p < 0.001) for both NS and DH during both constant-load exercise and at V̇O2max . Post hoc tests revealed Sa O2  values, compared to PL, were significantly higher at V̇O2max and during DH trials and higher with NS at constant-load intensities except at 70% (p = 0.13). CONCLUSION: The findings provide further evidence that histamine contributes directly or indirectly to the development of EIAH during intense exercise in highly trained athletes.


Subject(s)
Hypoxia , Nedocromil , Adult , Athletes , Diphenhydramine/therapeutic use , Exercise/physiology , Exercise Test , Humans , Hypoxia/drug therapy , Male , Nedocromil/therapeutic use , Oxygen , Oxygen Consumption/physiology , Young Adult
2.
Cough ; 1: 3, 2005 Aug 04.
Article in English | MEDLINE | ID: mdl-16270923

ABSTRACT

BACKGROUND: To date, methods used to assess cough have been primarily subjective, and only broadly reflect the impact of chronic cough and/or chronic cough therapies on quality of life. Objective assessment of cough has been attempted, but early techniques were neither ambulatory nor feasible for long-term data collection. We evaluated a novel ambulatory cardio-respiratory monitoring system with an integrated unidirectional, contact microphone, and report here the results from a study of patients with COPD who were videotaped in a quasi-controlled environment for 24 continuous hours while wearing the ambulatory system. METHODS: Eight patients with a documented history of COPD with ten or more years of smoking (6 women; age 57.4 +/- 11.8 yrs.; percent predicted FEV1 49.6 +/- 13.7%) who complained of cough were evaluated in a clinical research unit equipped with video and sound recording capabilities. All patients wore the LifeShirt system (LS) while undergoing simultaneous video (with sound) surveillance. Video data were visually inspected and annotated to indicate all cough events. Raw physiologic data records were visually inspected by technicians who remained blinded to the video data. Cough events from LS were analyzed quantitatively with a specialized software algorithm to identify cough. The output of the software algorithm was compared to video records on a per event basis in order to determine the validity of the LS system to detect cough in COPD patients. RESULTS: Video surveillance identified a total of 3,645 coughs, while LS identified 3,363 coughs during the same period. The median cough rate per patient was 21.3 coughs.hr-1 (Range: 10.1 cghs.hr(-1) - 59.9 cghs.hr(-1)). The overall accuracy of the LS system was 99.0%. Overall sensitivity and specificity of LS, when compared to video surveillance, were 0.781 and 0.996, respectively, while positive- and negative-predictive values were 0.846 and 0.994. There was very good agreement between the LS system and video (kappa = 0.807). CONCLUSION: The LS system demonstrated a high level of accuracy and agreement when compared to video surveillance for the measurement of cough in patients with COPD.

4.
Biomed Sci Instrum ; 40: 317-24, 2004.
Article in English | MEDLINE | ID: mdl-15133978

ABSTRACT

Respiratory sinus arrhythmia (RSA) is a commonly employed non-invasive measure of cardiac vagal control. It has been demonstrated that respiratory parameters such as tidal volume and respiratory frequency can change RSA without altering tonic vagal activity. Thus, within-individual comparisons of cardiac vagal control across different behavioral tasks might benefit from an adjustment for respiratory confounds. We tested an adjustment method using transfer function analysis and paced breathing at 3 different respiratory frequencies as the basis for regressing out respiratory related RSA changes in a task where breathing was not controlled. Electrocardiogram and calibrated respiration were recorded with the LifeShirt system from 15 young adult participants. Time series of RR intervals and lung volume change were computed and the respiration-to-RR-interval transfer-function magnitude (RSA-TF, in ms/liter) estimated. Mean (SD) of RSA-TF was 142 (68) at 9 breaths/min, 78 (52) at 13.5 breaths/min, 57 (43) at 18 breaths/min, and 121 (56) during baseline, with a respiratory frequency of 12.5 (3.8) breaths/min. At baseline, measured and predicted RSA-TF values (mean 94 +/- 82) differed significantly and correlated only moderately (r = 0.67). Factors contributing to a less than perfect correlation included slightly elevated subjective anxiety levels and hyperventilation during paced breathing, both of which may have affected cardiac vagal tone. This study demonstrates a novel procedure for computing a respiratory unrelated RSA index. Results provide some support for the utility of this adjustment method for improving the estimation of cardiac vagal tone from RSA, but also indicate that the paced breathing procedure may need to be further refined.


Subject(s)
Algorithms , Diagnosis, Computer-Assisted/methods , Electrocardiography/methods , Heart Rate/physiology , Heart/innervation , Heart/physiology , Respiratory Mechanics/physiology , Vagus Nerve/physiology , Adult , Artifacts , Calibration , Electrocardiography/instrumentation , Female , Humans , Monitoring, Ambulatory/methods , Reproducibility of Results , Respiration , Sensitivity and Specificity , Sinoatrial Node/innervation , Sinoatrial Node/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...