Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Stereotact Funct Neurosurg ; : 1-4, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38461818

ABSTRACT

INTRODUCTION: Infection after deep brain stimulation (DBS) implanted pulse generator (IPG) replacement is uncommon but when it occurs can cause significant clinical morbidity, often resulting in partial or complete DBS system removal. An antibiotic absorbable envelope developed for cardiac implantable electronic devices (IEDs), which releases minocycline and rifampicin for a minimum of 7 days, was shown in the WRAP-IT study to reduce cardiac IED infections for high-risk cardiac patients. We aimed to assess whether placing an IPG in the same antibiotic envelope at the time of IPG replacement reduced the IPG infection rate. METHODS: Following institutional ethics approval (UnitingCare HREC), patients scheduled for IPG change due to impending battery depletion were prospectively randomised to receive IPG replacement with or without an antibiotic envelope. Patients with a past history of DBS system infection were excluded. Patients underwent surgery with standard aseptic neurosurgical technique [J Neurol Sci. 2017;383:135-41]. Subsequent infection requiring antibiotic therapy and/or IPG removal or revision was recorded. RESULTS: A total of 427 consecutive patients were randomised from 2018 to 2021 and followed for a minimum of 12 months. No patients were lost to follow-up. At the time of IPG replacement, 200 patients received antibiotic envelope (54 female, 146 male, mean age 72 years), and 227 did not (43 female, 184 male, mean age 71 years). The two groups were homogenous for risk factors of infection. The IPG replacement infection rate was 2.1% (9/427). There were six infections, which required antibiotic therapy and/or IPG removal, in the antibiotic envelope group (6/200) and three in the non-envelope group (3/227) (p = 0.66). CONCLUSION: This prospective randomised study did not find that an antibiotic envelope reduced the IPG infection rate in our 427 patients undergoing routine DBS IPG replacement. Further research to reduce IPG revisions and infections in a cost-effective manner is required.

3.
J Med Case Rep ; 16(1): 15, 2022 Jan 09.
Article in English | MEDLINE | ID: mdl-34998426

ABSTRACT

BACKGROUND: The globus pallidus internus is the main target for the treatment of dystonia by deep brain stimulation. Unfortunately, for some genetic etiologies, the therapeutic outcome of dystonia is less predictable. In particular, therapeutic outcomes for deep brain stimulation in craniocervical and orolaryngeal dystonia in DYT6-positive patients are poor. Little is known about the neurophysiology of the globus pallidus internus in DYT6-positive dystonia, and how symptomatic treatment affects the neural activity of this region. CASE PRESENTATION: We present here the case of a 55-year-old Caucasian female DYT6-dystonic patient with blepharospasm, spasmodic dysphonia, and oromandibular dystonia where single-unit and local field potential activity was recorded from the globus pallidus internus during two deep brain stimulation revision surgeries 4 years apart with no symptomatic improvement. Botulinum toxin injections consistently improved dysphonia, while some of the other symptoms were only inconsistently or marginally improved. Neural activity in the globus pallidus internus during both revision surgeries were compared with previously published results from an idiopathic dystonic cohort. Single-cell firing characteristics and local field potential from the first revision surgery showed no differences with our control group. However, during the second revision surgery, the mean firing rate of single units and local field potential power in the gamma range were lower than those present during the first revision surgery or the control group. CONCLUSIONS: Symptoms related to facial movements were greatly improved by botulinum toxin treatment between revision surgeries, which coincided with lower discharge rate and changes in gamma local field oscillations.


Subject(s)
Botulinum Toxins , Deep Brain Stimulation , Dystonia , Dystonia/drug therapy , Female , Globus Pallidus , Humans , Middle Aged , Treatment Outcome
4.
Front Hum Neurosci ; 16: 1084782, 2022.
Article in English | MEDLINE | ID: mdl-36819295

ABSTRACT

The deep brain stimulation (DBS) Think Tank X was held on August 17-19, 2022 in Orlando FL. The session organizers and moderators were all women with the theme women in neuromodulation. Dr. Helen Mayberg from Mt. Sinai, NY was the keynote speaker. She discussed milestones and her experiences in developing depression DBS. The DBS Think Tank was founded in 2012 and provides an open platform where clinicians, engineers and researchers (from industry and academia) can freely discuss current and emerging DBS technologies as well as the logistical and ethical issues facing the field. The consensus among the DBS Think Tank X speakers was that DBS has continued to expand in scope however several indications have reached the "trough of disillusionment." DBS for depression was considered as "re-emerging" and approaching a slope of enlightenment. DBS for depression will soon re-enter clinical trials. The group estimated that globally more than 244,000 DBS devices have been implanted for neurological and neuropsychiatric disorders. This year's meeting was focused on advances in the following areas: neuromodulation in Europe, Asia, and Australia; cutting-edge technologies, closed loop DBS, DBS tele-health, neuroethics, lesion therapy, interventional psychiatry, and adaptive DBS.

5.
Transl Psychiatry ; 11(1): 190, 2021 03 29.
Article in English | MEDLINE | ID: mdl-33782383

ABSTRACT

Deep brain stimulation (DBS) is a promising treatment for severe, treatment-resistant obsessive-compulsive disorder (OCD). Here, nine participants (four females, mean age 47.9 ± 10.7 years) were implanted with DBS electrodes bilaterally in the bed nucleus of the stria terminalis (BNST). Following a one-month postoperative recovery phase, participants entered a three-month randomised, double-blind, sham-controlled phase before a twelve-month period of open-label stimulation incorporating a course of cognitive behavioural therapy (CBT). The primary outcome measure was OCD symptoms as rated with the Yale-Brown Obsessive-Compulsive Scale (YBOCS). In the blinded phase, there was a significant benefit of active stimulation over sham (p = 0.025, mean difference 4.9 points). After the open phase, the mean reduction in YBOCS was 16.6 ± 1.9 points (χ2 (11) = 39.8, p = 3.8 × 10-5), with seven participants classified as responders. CBT resulted in an additive YBOCS reduction of 4.8 ± 3.9 points (p = 0.011). There were two serious adverse events related to the DBS device, the most severe of which was an infection during the open phase necessitating device explantation. There were no serious psychiatric adverse events related to stimulation. An analysis of the structural connectivity of each participant's individualised stimulation field isolated right-hemispheric fibres associated with YBOCS reduction. These included subcortical tracts incorporating the amygdala, hippocampus and stria terminalis, in addition to cortical regions in the ventrolateral and ventromedial prefrontal cortex, parahippocampal, parietal and extrastriate visual cortex. In conclusion, this study provides further evidence supporting the efficacy and tolerability of DBS in the region of the BNST for individuals with otherwise treatment-refractory OCD and identifies a connectivity fingerprint associated with clinical benefit.


Subject(s)
Deep Brain Stimulation , Obsessive-Compulsive Disorder , Septal Nuclei , Adult , Double-Blind Method , Female , Humans , Middle Aged , Obsessive-Compulsive Disorder/therapy , Thalamus , Treatment Outcome
7.
J Geriatr Psychiatry Neurol ; 34(5): 454-465, 2021 09.
Article in English | MEDLINE | ID: mdl-32400266

ABSTRACT

Subthalamic deep brain stimulation for Parkinson's disease may not ameliorate burden among caregivers. An 8-session, manualized program of cognitive-behavioral therapy (CBT) was delivered to a pilot sample of 10 caregivers (6 females, mean age: 60, age range: 34-79). Primary outcome measures were caregiver burden (Zarit Burden Interview) and caregiver quality of life (Parkinson's Disease Questionnaire-Carer). Secondary outcome measures comprised ratings of depression and anxiety in the caregiver, in addition to relationship quality. Caregiver burden (t = 2.91 P = .017) and caregiver anxiety (t = 2.82 P = .020) symptoms were significantly reduced at completion of the program, and these benefits were maintained 3 months later. Caregiver quality of life had significantly improved by the end of the intervention (t = 3.02 P = .015), but this effect was not sustained after 3 months. The longitudinal influence of participation in the program on caregiver burden was confirmed in a linear, mixed-effects model, χ2 (3) = 15.1, P = .0017). The intervention was well received by participants, and qualitative feedback was obtained. These results indicate that caregiver burden is modifiable in this cohort with a short course of CBT, that benefits are maintained after termination of the program, and that psychological treatment is acceptable to participants. Larger, controlled trials are justified.


Subject(s)
Cognitive Behavioral Therapy , Deep Brain Stimulation , Parkinson Disease , Aged , Caregivers , Cost of Illness , Female , Humans , Parkinson Disease/therapy , Pilot Projects , Quality of Life
8.
Mol Psychiatry ; 26(1): 60-65, 2021 01.
Article in English | MEDLINE | ID: mdl-33144712

ABSTRACT

A consensus has yet to emerge whether deep brain stimulation (DBS) for treatment-refractory obsessive-compulsive disorder (OCD) can be considered an established therapy. In 2014, the World Society for Stereotactic and Functional Neurosurgery (WSSFN) published consensus guidelines stating that a therapy becomes established when "at least two blinded randomized controlled clinical trials from two different groups of researchers are published, both reporting an acceptable risk-benefit ratio, at least comparable with other existing therapies. The clinical trials should be on the same brain area for the same psychiatric indication." The authors have now compiled the available evidence to make a clear statement on whether DBS for OCD is established therapy. Two blinded randomized controlled trials have been published, one with level I evidence (Yale-Brown Obsessive Compulsive Scale (Y-BOCS) score improved 37% during stimulation on), the other with level II evidence (25% improvement). A clinical cohort study (N = 70) showed 40% Y-BOCS score improvement during DBS, and a prospective international multi-center study 42% improvement (N = 30). The WSSFN states that electrical stimulation for otherwise treatment refractory OCD using a multipolar electrode implanted in the ventral anterior capsule region (including bed nucleus of stria terminalis and nucleus accumbens) remains investigational. It represents an emerging, but not yet established therapy. A multidisciplinary team involving psychiatrists and neurosurgeons is a prerequisite for such therapy, and the future of surgical treatment of psychiatric patients remains in the realm of the psychiatrist.


Subject(s)
Deep Brain Stimulation , Obsessive-Compulsive Disorder/therapy , Humans , Multicenter Studies as Topic , Obsessive-Compulsive Disorder/psychology , Obsessive-Compulsive Disorder/surgery , Randomized Controlled Trials as Topic , Treatment Outcome
9.
Neuroimage ; 223: 117352, 2020 12.
Article in English | MEDLINE | ID: mdl-32916288

ABSTRACT

Initiation and inhibition are executive functions whose disruption in Parkinson's disease impacts substantially on everyday activities. Management of Parkinson's disease with subthalamic deep brain stimulation (DBS) modifies initiation and inhibition, with prior work suggesting that these effects may be mediated via the connectivity of the subthalamic nucleus (STN) with the frontal cortex. Here, we employed high-resolution structural neuroimaging to investigate the variability in initiation, inhibition and strategy use in a cohort of twenty-five (ten females, mean age 62.5, mean Hoehn and Yahr stage 2.5) participants undertaking subthalamic DBS for Parkinson's disease. Neuropsychological assessment of initiation and inhibition was performed preoperatively and at six months postoperatively. We first reconstructed the preoperative connectivity of the STN with a frontal network of anterior and superior medial cortical regions. We then modelled the postoperative site of subthalamic stimulation and reconstructed the connectivity of the stimulation field within this same network. We found that, at both pre- and postoperative intervals, inter-individual variability in inhibition and initiation were strongly associated with structural network connectivity. Measures of subcortical atrophy and local stimulation effects did not play a significant role. Preoperatively, we replicated prior work, including a role for the right inferior frontal gyrus in inhibition and strategy use, as well as the left inferior frontal gyrus in tasks requiring selection under conditions of maintained inhibition. Postoperatively, greater connectivity of the stimulation field with right anterior cortical regions was associated with greater rule violations and suppression errors, supporting prior work implicating right-hemispheric STN stimulation in disinhibition. Our findings suggest that, in Parkinson's disease, connectivity of the frontal cortex with the STN is an important mediator of individual variability in initiation and inhibition,. Personalised information on brain network architecture could guide individualised brain circuit manipulation to minimise neuropsychological disruption after STN-DBS.


Subject(s)
Deep Brain Stimulation , Frontal Lobe/physiopathology , Inhibition, Psychological , Parkinson Disease/physiopathology , Parkinson Disease/psychology , Psychomotor Performance/physiology , Subthalamic Nucleus/physiopathology , Adult , Aged , Female , Humans , Male , Middle Aged , Neural Pathways/physiopathology , Neuropsychological Tests , Verbal Behavior/physiology
10.
Front Hum Neurosci ; 14: 162, 2020.
Article in English | MEDLINE | ID: mdl-32733215

ABSTRACT

Introduction: To evaluate the current utilization and challenges in fully implementing the use of deep brain stimulation (DBS) treatment in Asia and Oceania. Methods: We conducted a medical literature search to identify DBS research performed by investigators with a primary affiliation in Asian and Oceania countries between March 1, 2013, and March 1, 2019, followed by an international survey-based study. Additionally, we obtained added information regarding the DBS challenges and opportunities from the technology/industry perspective within China and Japan. We also described the current situation of DBS in India. Results: Most publications (390/494; 78.95%) in the English language originated from East Asia. In West Asia, Turkey, Israel, and Iran accounted for most DBS publications. We found no publications from the remaining 35 Asian countries. Lack of community referrals to tertiary centers was identified as the most common limitation for the widespread use of DBS in Asia (68.97%). In China, despite an increasing number of centers performing DBS surgeries, most of them accomplished less than 10 cases per year. In contrast, the number of DBS cases in Japan has been decreasing. Centers offering DBS surgeries as well as corresponding fellowship training in India are limited. Conclusion: Appropriate referrals, access, infrastructure, and the presence of full multidisciplinary DBS teams are common limitations of DBS in Asia. Most centers in China, Japan, and India performed less than 10 cases per year and a future study is expected to address the impact on quality in centers performing such few cases.

11.
Brain ; 143(7): 2235-2254, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32568370

ABSTRACT

Subthalamic deep brain stimulation (STN-DBS) for Parkinson's disease treats motor symptoms and improves quality of life, but can be complicated by adverse neuropsychiatric side-effects, including impulsivity. Several clinically important questions remain unclear: can 'at-risk' patients be identified prior to DBS; do neuropsychiatric symptoms relate to the distribution of the stimulation field; and which brain networks are responsible for the evolution of these symptoms? Using a comprehensive neuropsychiatric battery and a virtual casino to assess impulsive behaviour in a naturalistic fashion, 55 patients with Parkinson's disease (19 females, mean age 62, mean Hoehn and Yahr stage 2.6) were assessed prior to STN-DBS and 3 months postoperatively. Reward evaluation and response inhibition networks were reconstructed with probabilistic tractography using the participant-specific subthalamic volume of activated tissue as a seed. We found that greater connectivity of the stimulation site with these frontostriatal networks was related to greater postoperative impulsiveness and disinhibition as assessed by the neuropsychiatric instruments. Larger bet sizes in the virtual casino postoperatively were associated with greater connectivity of the stimulation site with right and left orbitofrontal cortex, right ventromedial prefrontal cortex and left ventral striatum. For all assessments, the baseline connectivity of reward evaluation and response inhibition networks prior to STN-DBS was not associated with postoperative impulsivity; rather, these relationships were only observed when the stimulation field was incorporated. This suggests that the site and distribution of stimulation is a more important determinant of postoperative neuropsychiatric outcomes than preoperative brain structure and that stimulation acts to mediate impulsivity through differential recruitment of frontostriatal networks. Notably, a distinction could be made amongst participants with clinically-significant, harmful changes in mood and behaviour attributable to DBS, based upon an analysis of connectivity and its relationship with gambling behaviour. Additional analyses suggested that this distinction may be mediated by the differential involvement of fibres connecting ventromedial subthalamic nucleus and orbitofrontal cortex. These findings identify a mechanistic substrate of neuropsychiatric impairment after STN-DBS and suggest that tractography could be used to predict the incidence of adverse neuropsychiatric effects. Clinically, these results highlight the importance of accurate electrode placement and careful stimulation titration in the prevention of neuropsychiatric side-effects after STN-DBS.


Subject(s)
Deep Brain Stimulation/adverse effects , Disruptive, Impulse Control, and Conduct Disorders/etiology , Disruptive, Impulse Control, and Conduct Disorders/physiopathology , Parkinson Disease/therapy , Subthalamic Nucleus/physiopathology , Adult , Aged , Diffusion Tensor Imaging , Female , Humans , Image Interpretation, Computer-Assisted , Impulsive Behavior/physiology , Male , Middle Aged , Nerve Net
12.
Brain ; 142(12): 3917-3935, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31665241

ABSTRACT

Impulsivity in Parkinson's disease may be mediated by faulty evaluation of rewards or the failure to inhibit inappropriate choices. Despite prior work suggesting that distinct neural networks underlie these cognitive operations, there has been little study of these networks in Parkinson's disease, and their relationship to inter-individual differences in impulsivity. High-resolution diffusion MRI data were acquired from 57 individuals with Parkinson's disease (19 females, mean age 62, mean Hoehn and Yahr stage 2.6) prior to surgery for deep brain stimulation. Reward evaluation and response inhibition networks were reconstructed with seed-based probabilistic tractography. Impulsivity was evaluated using two approaches: (i) neuropsychiatric instruments were used to assess latent constructs of impulsivity, including trait impulsiveness and compulsivity, disinhibition, and also impatience; and (ii) participants gambled in an ecologically-valid virtual casino to obtain a behavioural read-out of explorative, risk-taking, impulsive behaviour. Multivariate analyses revealed that different components of impulsivity were associated with distinct variations in structural connectivity, implicating both reward evaluation and response inhibition networks. Larger bet sizes in the virtual casino were associated with greater connectivity of the reward evaluation network, particularly bilateral fibre tracts between the ventral striatum and ventromedial prefrontal cortex. In contrast, weaker connectivity of the response inhibition network was associated with increased exploration of alternative slot machines in the virtual casino, with right-hemispheric tracts between the subthalamic nucleus and the pre-supplementary motor area contributing most strongly. Further, reduced connectivity of the reward evaluation network was associated with more 'double or nothing' gambles, weighted by connections between the subthalamic nucleus and ventromedial prefrontal cortex. Notably, the variance explained by structural connectivity was higher for behavioural indices of impulsivity, derived from clinician-administered tasks and the gambling paradigm, as compared to questionnaire data. Lastly, a clinically-meaningful distinction could be made amongst participants with a history of impulse control behaviours based on the interaction of their network connectivity with medication dosage and gambling behaviour. In summary, we report structural brain-behaviour covariation in Parkinson's disease with distinct reward evaluation and response inhibition networks that underlie dissociable aspects of impulsivity (cf. choosing and stopping). More broadly, our findings demonstrate the potential of using naturalistic paradigms and neuroimaging techniques in clinical settings to assist in the identification of those susceptible to harmful behaviours.


Subject(s)
Brain/diagnostic imaging , Gambling/diagnostic imaging , Impulsive Behavior/physiology , Nerve Net/diagnostic imaging , Parkinson Disease/diagnostic imaging , Aged , Brain/physiopathology , Diffusion Magnetic Resonance Imaging , Female , Gambling/physiopathology , Humans , Inhibition, Psychological , Male , Middle Aged , Nerve Net/physiopathology , Parkinson Disease/physiopathology , Reward
13.
Sci Rep ; 9(1): 14795, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31616015

ABSTRACT

Subthalamic deep brain stimulation (DBS) for Parkinson's disease (PD) may modulate chronometric and instrumental aspects of choice behaviour, including motor inhibition, decisional slowing, and value sensitivity. However, it is not well known whether subthalamic DBS affects more complex aspects of decision-making, such as the influence of subjective estimates of uncertainty on choices. In this study, 38 participants with PD played a virtual casino prior to subthalamic DBS (whilst 'on' medication) and again, 3-months postoperatively (whilst 'on' stimulation). At the group level, there was a small but statistically significant decrease in impulsivity postoperatively, as quantified by the Barratt Impulsiveness Scale (BIS). The gambling behaviour of participants (bet increases, slot machine switches and double or nothing gambles) was associated with this self-reported measure of impulsivity. However, there was a large variance in outcome amongst participants, and we were interested in whether individual differences in subjective estimates of uncertainty (specifically, volatility) were related to differences in pre- and postoperative impulsivity. To examine these individual differences, we fit a computational model (the Hierarchical Gaussian Filter, HGF), to choices made during slot machine game play as well as a simpler reinforcement learning model based on the Rescorla-Wagner formalism. The HGF was superior in accounting for the behaviour of our participants, suggesting that participants incorporated beliefs about environmental uncertainty when updating their beliefs about gambling outcome and translating these beliefs into action. A specific aspect of subjective uncertainty, the participant's estimate of the tendency of the slot machine's winning probability to change (volatility), increased subsequent to DBS. Additionally, the decision temperature of the response model decreased post-operatively, implying greater stochasticity in the belief-to-choice mapping of participants. Model parameter estimates were significantly associated with impulsivity; specifically, increased uncertainty was related to increased postoperative impulsivity. Moreover, changes in these parameter estimates were significantly associated with the maximum post-operative change in impulsivity over a six month follow up period. Our findings suggest that impulsivity in PD patients may be influenced by subjective estimates of uncertainty (environmental volatility) and implicate a role for the subthalamic nucleus in the modulation of outcome certainty. Furthermore, our work outlines a possible approach to characterising those persons who become more impulsive after subthalamic DBS, an intervention in which non-motor outcomes can be highly variable.


Subject(s)
Deep Brain Stimulation/adverse effects , Gambling/etiology , Impulsive Behavior/physiology , Parkinson Disease/therapy , Subthalamic Nucleus/physiopathology , Uncertainty , Adult , Aged , Choice Behavior/physiology , Computer Simulation , Female , Gambling/diagnosis , Gambling/psychology , Humans , Male , Middle Aged , Models, Psychological , Neuropsychological Tests , Parkinson Disease/physiopathology
14.
J Neurol ; 266(12): 2997-3008, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31485722

ABSTRACT

BACKGROUND: Deep-brain stimulation (DBS) can be effective in controlling medically intractable symptoms of Tourette's syndrome (TS). There is no evidence to date, though, of the potential cost-effectiveness of DBS for this indication. OBJECTIVE: To provide the first estimates of the likely cost-effectiveness of DBS in the treatment of severe TS. METHODS: We conducted a cost-utility analysis using clinical data from 17 Australian patients receiving DBS. Direct medical costs for DBS using non-rechargeable and rechargeable batteries and for the alternative best medical treatment (BMT), and health utilities for BMT were sourced from the literature. Incremental cost-effectiveness ratios (ICERs) were estimated using a Markov models with a 10-year time horizon and 5% discount rate. RESULTS: DBS increased quality-adjusted life year (QALY) gained from 2.76 to 4.60 over a 10-year time horizon. The ICER for DBS with non-rechargeable (rechargeable) batteries, compared to BMT, was A$33,838 (A$15,859) per QALY. The ICER estimates are sensitive to DBS costs and selected time horizon. CONCLUSIONS: Our study indicates that DBS may be a cost-effective treatment for severe TS, based on the very limited clinical data available and under particular assumptions. While the limited availability of data presents a challenge, we also conduct sensitivity analyses to test the robustness of the results to the assumptions used in the analysis. We nevertheless recommend the implementation of randomised controlled trials that collect a comprehensive range of costs and the use of a widely accepted health-related quality of life instrument to enable more definitive statements about the cost-effectiveness of DBS for TS.


Subject(s)
Cost-Benefit Analysis , Deep Brain Stimulation/economics , Tourette Syndrome/economics , Tourette Syndrome/therapy , Deep Brain Stimulation/instrumentation , Humans , Markov Chains , Quality-Adjusted Life Years
15.
Clin Auton Res ; 29(6): 615-624, 2019 12.
Article in English | MEDLINE | ID: mdl-31493114

ABSTRACT

PURPOSE: Dysautonomia can be a debilitating feature of Parkinson disease (PD). Pedunculopontine nucleus (PPN) stimulation may improve gait disorders in PD, and may also result in changes in autonomic performance. METHODS: To determine whether pedunculopontine nucleus stimulation improves cardiovascular responses to autonomic challenges of postural tilt and Valsalva manoeuver, eight patients with pedunculopontine nucleus deep brain stimulation were recruited to the study; two were excluded for technical reasons during testing. Participants underwent head up tilt and Valsalva manoeuver with stimulation turned ON and OFF. Continuous blood pressure and ECG waveforms were recorded during these tests. In a single patient, local field potential activity was recorded from the implanted electrode during tilt. RESULTS: The fall in systolic blood pressure after tilt was significantly smaller with stimulation ON (mean - 8.3% versus - 17.2%, p = 0.044). Valsalva ratio increased with stimulation from median 1.15 OFF to 1.20 ON (p = 0.028). Baroreflex sensitivity increased during Valsalva compared to rest with stimulation ON versus OFF (p = 0.028). The increase in baroreflex sensitivity correlated significantly with the mean depth of PPN stimulating electrode contacts. This accounted for 89% of its variance (r = 0.943, p = 0.005). CONCLUSION: PPN stimulation can modulate the cardiovascular system in patients with PD. In this study, it reduced the postural fall in systolic blood pressure during head-up tilt and improved the cardiovascular response during Valsalva, presumably by altering the neural control of baroreflex activation.


Subject(s)
Deep Brain Stimulation/methods , Parkinson Disease/complications , Parkinson Disease/therapy , Pedunculopontine Tegmental Nucleus/physiology , Primary Dysautonomias/etiology , Aged , Female , Humans , Male , Middle Aged , Tilt-Table Test , Valsalva Maneuver
16.
Ann Clin Transl Neurol ; 6(5): 837-847, 2019 May.
Article in English | MEDLINE | ID: mdl-31139681

ABSTRACT

OBJECTIVE: Respiratory abnormalities such as upper airway obstruction are common in Parkinson's disease (PD) and are an important cause of mortality and morbidity. We tested the effect of pedunculopontine region (PPNr) stimulation on respiratory maneuvers in human participants with PD, and separately recorded PPNr neural activity reflected in the local field potential (LFP) during these maneuvers. METHODS: Nine patients with deep brain stimulation electrodes in PPNr, and seven in globus pallidus interna (GPi) were studied during trials of maximal inspiration followed by forced expiration with stimulation OFF and ON. Local field potentials (LFPs) were recorded in the unstimulated condition. RESULTS: PEFR increased from 6.41 ± 0.63 L/sec in the OFF stimulation state to 7.5 L ± 0.65 L/sec in the ON stimulation state (z = -2.666, df = 8, P = 0.024). Percentage improvement in PEFR was strongly correlated with proximity of the stimulated electrode contact to the mesencephalic locomotor region in the rostral PPN (r = 0.814, n = 9, P = 0.008). Mean PPNr LFP power increased within the alpha band (7-11 Hz) during forced respiratory maneuvers (1.63 ± 0.16 µV2/Hz) compared to resting breathing (0.77 ± 0.16 µV2/Hz; z = -2.197, df = 6, P = 0.028). No changes in alpha activity or spirometric indices were seen with GPi recording or stimulation. Percentage improvement in PEFR was strongly positively correlated with increase in alpha power (r = 0.653, n = 14 (7 PPNr patients recorded bilaterally), P = 0.0096). INTERPRETATION: PPNr stimulation in PD improves indices of upper airway function. Increased alpha-band activity is seen within the PPNr during forced respiratory maneuvers. Our findings suggest a link between the PPNr and respiratory performance in PD.


Subject(s)
Airway Obstruction/therapy , Globus Pallidus/physiology , Parkinson Disease/complications , Parkinson Disease/physiopathology , Pedunculopontine Tegmental Nucleus/physiology , Aged , Deep Brain Stimulation/methods , Electric Stimulation , Female , Humans , Lung , Male , Middle Aged , Respiration
17.
Oper Neurosurg (Hagerstown) ; 17(6): 549-553, 2019 12 01.
Article in English | MEDLINE | ID: mdl-30851040

ABSTRACT

BACKGROUND: Deep brain stimulation (DBS) is a treatment modality increasingly utilized in the management of neurological and psychiatric conditions. Neurosurgical technical considerations and contraindications have yet to be thoroughly characterized in the literature. The patient population for DBS includes many elderly patients with multiple comorbidities who require treatments and investigations that expose them to electromagnetic fields of varying strengths and durations, including other implanted electromodulatory devices. OBJECTIVE: To determine if clinically significant interference arises between DBS and cardiac pacemaker systems. METHODS: Here we audited 8 patients, mean age 72, with cardiac pacemakers and DBS implanted from 2007 to 2015. We investigated details of their neurological and electrocardiological treatment and progress and sought evidence for interference between the two systems. RESULTS: We found no evidence of DBS dysfunction, and only one case of abnormal pacemaker interrogation 2 yr post-DBS implantation was found, which was thought to be secondary to a medication issue rather than neuromodulation interference. CONCLUSION: Our research reassures the clinician that pacemakers and DBS systems do not appear to affect one another and provides guidance on minimizing possibility of this.


Subject(s)
Cardiac Pacing, Artificial , Deep Brain Stimulation , Heart Block/therapy , Implantable Neurostimulators , Pacemaker, Artificial , Parkinson Disease/therapy , Aged , Atrial Fibrillation/complications , Atrial Fibrillation/therapy , Cardiac Resynchronization Therapy , Cardiac Resynchronization Therapy Devices , Dystonia/complications , Dystonia/therapy , Female , Heart Block/complications , Humans , Male , Middle Aged , Parkinson Disease/complications
18.
Cogn Behav Neurol ; 31(4): 207-213, 2018 12.
Article in English | MEDLINE | ID: mdl-30562230

ABSTRACT

Intracranial epidermoid cysts are rare, comprising 0.2% to 1.8% of all primary intracranial expanding lesions, of which <5% occur within the fourth ventricle. Epidermoid cysts are frequently congenital, and patients often present in the fourth decade of life. These cysts produce symptoms as a result of mass effect on surrounding structures, most commonly the cerebellum and cranial nerves. Symptoms can include hearing impairment, trigeminal neuralgia (severe facial pain), facial tics, headaches, double vision, and facial palsy. However, no research has focused on the neuropsychological effects on a patient after surgical resection of these cysts. This case report presents the cognitive profile of a woman after resection of an epidermoid cyst in the fourth ventricle. The 49-year-old patient underwent neuropsychological assessment after removal of the cyst, completing a comprehensive set of cognitive tests of estimated premorbid intelligence, attention, memory, social cognition, language, visual perception, and executive functioning. Test results indicated executive dysfunction and reduced visuospatial memory in the acute stage after surgical removal of the epidermoid cyst. These findings suggest that cognitive deficits can occur after resection of space-occupying lesions in brain regions not typically associated with cognition. To our knowledge, this is the first report of the neuropsychological consequences of surgical removal of a congenital epidermoid cyst in the fourth ventricle. An understanding of the neuropsychological sequelae of this rare cerebral cyst will allow patients, families, and health professionals to better anticipate and manage postoperative difficulties.


Subject(s)
Brain Diseases/complications , Fourth Ventricle/abnormalities , Brain Diseases/pathology , Epidermal Cyst/pathology , Epidermal Cyst/surgery , Female , Humans , Middle Aged
19.
Brain ; 141(10): 3009-3022, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30165427

ABSTRACT

Impaired balance is a major contributor to falls and diminished quality of life in Parkinson's disease, yet the pathophysiology is poorly understood. Here, we assessed if patients with Parkinson's disease and severe clinical balance impairment have deficits in the intermittent and continuous control systems proposed to maintain upright stance, and furthermore, whether such deficits are potentially reversible, with the experimental therapy of pedunculopontine nucleus deep brain stimulation. Two subject groups were assessed: (i) 13 patients with Parkinson's disease and severe clinical balance impairment, implanted with pedunculopontine nucleus deep brain stimulators; and (ii) 13 healthy control subjects. Patients were assessed in the OFF medication state and blinded to two conditions; off and on pedunculopontine nucleus stimulation. Postural sway data (deviations in centre of pressure) were collected during quiet stance using posturography. Intermittent control of sway was assessed by calculating the frequency of intermittent switching behaviour (discontinuities), derived using a wavelet-based transformation of the sway time series. Continuous control of sway was assessed with a proportional-integral-derivative (PID) controller model using ballistic reaction time as a measure of feedback delay. Clinical balance impairment was assessed using the 'pull test' to rate postural reflexes and by rating attempts to arise from sitting to standing. Patients with Parkinson's disease demonstrated reduced intermittent switching of postural sway compared with healthy controls. Patients also had abnormal feedback gains in postural sway according to the PID model. Pedunculopontine nucleus stimulation improved intermittent switching of postural sway, feedback gains in the PID model and clinical balance impairment. Clinical balance impairment correlated with intermittent switching of postural sway (rho = - 0.705, P < 0.001) and feedback gains in the PID model (rho = 0.619, P = 0.011). These results suggest that dysfunctional intermittent and continuous control systems may contribute to the pathophysiology of clinical balance impairment in Parkinson's disease. Clinical balance impairment and their related control system deficits are potentially reversible, as demonstrated by their improvement with pedunculopontine nucleus deep brain stimulation.


Subject(s)
Parkinson Disease/physiopathology , Pedunculopontine Tegmental Nucleus/physiopathology , Postural Balance/physiology , Aged , Deep Brain Stimulation , Female , Humans , Male , Middle Aged
20.
Neuroimage Clin ; 18: 996-1006, 2018.
Article in English | MEDLINE | ID: mdl-29876284

ABSTRACT

Deep brain stimulation of the subthalamic nucleus for Parkinson's disease is an established advanced therapy that addresses motor symptoms and improves quality of life. However, it has also been associated with neuropsychiatric symptoms such as impulsivity and hypomania. When significant, these symptoms can be distressing, necessitating psychiatric intervention. However, a comprehensive analysis of neurocognitive and neuropsychiatric outcomes with reference to the site of subthalamic stimulation has not been undertaken. We examined this matter in a consecutive sample of 64 persons with Parkinson's disease undertaking subthalamic deep brain stimulation. Participants were assessed with a battery of neuropsychiatric instruments at baseline and at repeated postoperative intervals. A psychiatrist identified patients with emergent, clinically-significant symptoms due to stimulation. The site of the active electrode contact and a simulated volume of activated tissue were evaluated with reference to putative limbic, associative and motor subregions of the subthalamic nucleus. We studied anatomical correlates of longitudinal neuropsychiatric change and delineated specific subthalamic regions associated with neuropsychiatric impairment. We tested the ability of these data to predict clinically-significant symptoms. Subthalamic stimulation within the right associative subregion was associated with inhibitory errors on the Excluded Letter Fluency task at 6-weeks (p = 0.023) and 13-weeks postoperatively (p = 0.0017). A cluster of subthalamic voxels associated with inhibitory errors was identified in the right associative and motor subregions. At 6-weeks, clinically-significant neuropsychiatric symptoms were associated with the distance of the active contact to the right associative subregion (p = 0.0026) and stimulation within the right associative subregion (p = 0.0009). At 13-weeks, clinically-significant symptoms were associated with the distance to the right (p = 0.0027) and left (p = 0.0084) associative subregions and stimulation within the right associative subregion (p = 0.0026). Discrete clusters of subthalamic voxels associated with high and low likelihood of postoperative neuropsychiatric symptoms were identified in ventromedial and dorsolateral zones, respectively. When a classifier was trained on these data, clinically-significant symptoms were predicted with an accuracy of 79%. These data underscore the importance of accurate electrode targeting, contact selection and device programming to reduce postoperative neuropsychiatric impairment. The ability to predict neuropsychiatric symptoms based on subthalamic data may permit anticipation and prevention of these occurrences, improving safety and tolerability.


Subject(s)
Deep Brain Stimulation , Mental Disorders/therapy , Parkinson Disease/therapy , Subthalamic Nucleus/surgery , Adult , Aged , Deep Brain Stimulation/methods , Female , Humans , Impulsive Behavior/physiology , Male , Mental Disorders/complications , Middle Aged , Neuropsychological Tests , Parkinson Disease/complications , Quality of Life , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...