Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Mol Cell Endocrinol ; 589: 112235, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38621656

ABSTRACT

Luteinizing hormone (LH) is essential for reproduction, controlling ovulation and steroidogenesis. Its receptor (LHR) recruits various transducers leading to the activation of a complex signaling network. We recently identified iPRC1, the first variable fragment from heavy-chain-only antibody (VHH) interacting with intracellular loop 3 (ICL3) of the follicle-stimulating hormone receptor (FSHR). Because of the high sequence similarity of the human FSHR and LHR (LHCGR), here we examined the ability of the iPRC1 intra-VHH to modulate LHCGR activity. In this study, we demonstrated that iPRC1 binds LHCGR, to a greater extent when the receptor was stimulated by the hormone. In addition, it decreased LH-induced cAMP production, cAMP-responsive element-dependent transcription, progesterone and testosterone production. These impairments are not due to Gs nor ß-arrestin recruitment to the LHCGR. Consequently, iPRC1 is the first intra-VHH to bind and modulate LHCGR biological activity, including steroidogenesis. It should help further understand signaling mechanisms elicited at this receptor and their outcomes on reproduction.

2.
FEBS Lett ; 598(2): 220-232, 2024 01.
Article in English | MEDLINE | ID: mdl-37923554

ABSTRACT

Intracellular variable fragments of heavy-chain antibody from camelids (intra-VHH) have been successfully used as chaperones to solve the 3D structure of active G protein-coupled receptors bound to their transducers. However, their effect on signalling has been poorly explored, although they may provide a better understanding of the relationships between receptor conformation and activity. Here, we isolated and characterized iPRC1, the first intra-VHH recognizing a member of the large glycoprotein hormone receptor family, the follicle-stimulating hormone receptor (FSHR). This intra-VHH recognizes the FSHR third intracellular loop and decreases cAMP production in response to FSH, without altering Gαs recruitment. Hence, iPRC1 behaves as an allosteric modulator and provides a new tool to complete structure/activity studies performed thus far on this receptor.


Subject(s)
Follicle Stimulating Hormone , Receptors, FSH , Receptors, FSH/genetics , Receptors, FSH/chemistry , Receptors, FSH/metabolism , Follicle Stimulating Hormone/chemistry , Follicle Stimulating Hormone/metabolism , Follicle Stimulating Hormone/pharmacology , GTP-Binding Proteins/metabolism , Signal Transduction
3.
Int J Mol Sci ; 24(21)2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37958944

ABSTRACT

Developing modulatory antibodies against G protein-coupled receptors is challenging. In this study, we targeted the follicle-stimulating hormone receptor (FSHR), a significant regulator of reproduction, with variable domains of heavy chain-only antibodies (VHHs). We built two immune VHH libraries and submitted them to multiplexed phage display approaches. We used next-generation sequencing to identify 34 clusters of specifically enriched sequences that were functionally assessed in a primary screen based on a cAMP response element (CRE)-dependent reporter gene assay. In this assay, 23 VHHs displayed negative or positive modulation of FSH-induced responses, suggesting a high success rate of the multiplexed strategy. We then focused on the largest cluster identified (i.e., PRC1) that displayed positive modulation of FSH action. We demonstrated that PRC1 specifically binds to the human FSHR and human FSHR/FSH complex while potentiating FSH-induced cAMP production and Gs recruitment. We conclude that the improved selection strategy reported here is effective for rapidly identifying functionally active VHHs and could be adapted to target other challenging membrane receptors. This study also led to the identification of PRC1, the first potential positive modulator VHH reported for the human FSHR.


Subject(s)
Bacteriophages , Receptors, FSH , Humans , Receptors, FSH/genetics , Receptors, FSH/metabolism , Follicle Stimulating Hormone/metabolism , Signal Transduction , High-Throughput Nucleotide Sequencing , Bacteriophages/genetics
4.
Br J Pharmacol ; 2023 Aug 13.
Article in English | MEDLINE | ID: mdl-37574491

ABSTRACT

Autism spectrum disorders (ASDs) are diagnosed in 1/100 children worldwide, based on two core symptoms: deficits in social interaction and communication, and stereotyped behaviours. G protein-coupled receptors (GPCRs) are the largest family of cell-surface receptors that transduce extracellular signals to convergent intracellular signalling and downstream cellular responses that are commonly dysregulated in ASD. Despite hundreds of GPCRs being expressed in the brain, only 23 are genetically associated with ASD according to the Simons Foundation Autism Research Initiative (SFARI) gene database: oxytocin OTR; vasopressin V1A and V1B ; metabotropic glutamate mGlu5 and mGlu7 ; GABAB2 ; dopamine D1 , D2 and D3 ; serotoninergic 5-HT1B ; ß2 -adrenoceptor; cholinergic M3 ; adenosine A2A and A3 ; angiotensin AT2 ; cannabinoid CB1 ; chemokine CX3 CR1; orphan GPR37 and GPR85; and olfactory OR1C1, OR2M4, OR2T10 and OR52M1. Here, we review the therapeutic potential of these 23 GPCRs, as well as 5-HT2A and 5-HT7 , for ASD. For each GPCR, we discuss its genetic association, genetic and pharmacological manipulation in animal models, pharmacopoeia for core symptoms of ASD and rank them based on these factors. Among these GPCRs, we highlight D2 , 5-HT2A , CB1 , OTR and V1A as the more promising targets for ASD. We discuss that the dysregulation of GPCRs and their signalling is a convergent pathological mechanism of ASD. Their therapeutic potential has only begun as multiple GPCRs could mitigate ASD.

5.
Front Endocrinol (Lausanne) ; 13: 1048601, 2022.
Article in English | MEDLINE | ID: mdl-36465650

ABSTRACT

Single-domain antibody fragments, also known as VHHs or nanobodies, have opened promising avenues in therapeutics and in exploration of intracellular processes. Because of their unique structural properties, they can reach cryptic regions in their cognate antigen. Intracellular VHHs/antibodies primarily directed against cytosolic proteins or transcription factors have been described. In contrast, few of them target membrane proteins and even less recognize G protein-coupled receptors. These receptors are major therapeutic targets, which reflects their involvement in a plethora of physiological responses. Hence, they elicit a tremendous interest in the scientific community and in the industry. Comprehension of their pharmacology has been obscured by their conformational complexity, that has precluded deciphering their structural properties until the early 2010's. To that respect, intracellular VHHs have been instrumental in stabilizing G protein-coupled receptors in active conformations in order to solve their structure, possibly bound to their primary transducers, G proteins or ß-arrestins. In contrast, the modulatory properties of VHHs recognizing the intracellular regions of G protein-coupled receptors on the induced signaling network have been poorly studied. In this review, we will present the advances that the intracellular VHHs have permitted in the field of GPCR signaling and trafficking. We will also discuss the methodological hurdles that linger the discovery of modulatory intracellular VHHs directed against GPCRs, as well as the opportunities they open in drug discovery.


Subject(s)
Antibodies , Drug Discovery , Monitoring, Physiologic , Membrane Proteins , Signal Transduction
6.
Int J Mol Sci ; 23(17)2022 Aug 28.
Article in English | MEDLINE | ID: mdl-36077163

ABSTRACT

Developing a therapeutic antibody is a long, tedious, and expensive process. Many obstacles need to be overcome, such as biophysical properties (issues of solubility, stability, weak production yields, etc.), as well as cross-reactivity and subsequent toxicity, which are major issues. No in silico method exists today to solve such issues. We hypothesized that if we were able to properly measure the similarity between the CDRs of antibodies (Ab) by considering not only their evolutionary proximity (sequence identity) but also their structural features, we would be able to identify families of Ab recognizing similar epitopes. As a consequence, Ab within the family would share the property to recognize their targets, which would allow (i) to identify off-targets and forecast the cross-reactions, and (ii) to identify new Ab specific for a given target. Testing our method on 238D2, an antagonistic anti-CXCR4 nanobody, we were able to find new nanobodies against CXCR4 and to identify influenza hemagglutinin as an off-target of 238D2.


Subject(s)
Influenza, Human , Single-Domain Antibodies , Antibodies , Epitopes , Hemagglutinins , Humans
7.
Int J Mol Sci ; 22(18)2021 Sep 12.
Article in English | MEDLINE | ID: mdl-34576014

ABSTRACT

Follicle-stimulating hormone receptor (FSHR) plays a key role in reproduction through the activation of multiple signaling pathways. Low molecular weight (LMW) ligands composed of biased agonist properties are highly valuable tools to decipher complex signaling mechanisms as they allow selective activation of discrete signaling cascades. However, available LMW FSHR ligands have not been fully characterized yet. In this context, we explored the pharmacological diversity of three benzamide and two thiazolidinone derivatives compared to FSH. Concentration/activity curves were generated for Gαs, Gαq, Gαi, ß-arrestin 2 recruitment, and cAMP production, using BRET assays in living cells. ERK phosphorylation was analyzed by Western blotting, and CRE-dependent transcription was assessed using a luciferase reporter assay. All assays were done in either wild-type, Gαs or ß-arrestin 1/2 CRISPR knockout HEK293 cells. Bias factors were calculated for each pair of read-outs by using the operational model. Our results show that each ligand presented a discrete pharmacological efficacy compared to FSH, ranging from super-agonist for ß-arrestin 2 recruitment to pure Gαs bias. Interestingly, LMW ligands generated kinetic profiles distinct from FSH (i.e., faster, slower or transient, depending on the ligand) and correlated with CRE-dependent transcription. In addition, clear system biases were observed in cells depleted of either Gαs or ß-arrestin genes. Such LMW properties are useful pharmacological tools to better dissect the multiple signaling pathways activated by FSHR and assess their relative contributions at the cellular and physio-pathological levels.


Subject(s)
GTP-Binding Protein alpha Subunits/pharmacology , Receptors, FSH/agonists , beta-Arrestin 2/pharmacology , Cyclic AMP/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , HEK293 Cells , Humans , Kinetics
8.
MAbs ; 13(1): 1961349, 2021.
Article in English | MEDLINE | ID: mdl-34432559

ABSTRACT

MAbTope is a docking-based method for the determination of epitopes. It has been used to successfully determine the epitopes of antibodies with known 3D structures. However, during the antibody discovery process, this structural information is rarely available. Although we already have evidence that homology models of antibodies could be used instead of their 3D structure, the choice of the template, the methodology for homology modeling and the resulting performance still have to be clarified. Here, we show that MAbTope has the same performance when working with homology models of the antibodies as compared to crystallographic structures. Moreover, we show that even low-quality models can be used. We applied MAbTope to determine the epitope of dupilumab, an anti- interleukin 4 receptor alpha subunit therapeutic antibody of unknown 3D structure, that we validated experimentally. Finally, we show how the MAbTope-determined epitopes for a series of antibodies targeting the same protein can be used to predict competitions, and demonstrate the accuracy with an experimentally validated example.3D: three-dimensionalRMSD: root mean square deviationCDR: complementary-determining regionCPU: central processing unitsVH: heavy chain variable regionVL: light chain variable regionscFv: single-chain variable fragmentsVHH: single-chain antibody variable regionIL4Rα: Interleukin 4 receptor alpha chainSPR: surface plasmon resonancePDB: protein data bankHEK293: Human embryonic kidney 293 cellsEDTA: Ethylenediaminetetraacetic acidFBS: Fetal bovine serumANOVA: Analysis of varianceEGFR: Epidermal growth factor receptorPE: PhycoerythrinAPC: AllophycocyaninFSC: forward scatterSSC: side scatterWT: wild typeKeywords: MAbTope, Epitope Mapping, Molecular docking, Antibody modeling, Antibody-antigen docking.


Subject(s)
Antibodies, Monoclonal, Humanized/immunology , Antigens/immunology , Epitope Mapping , Epitopes , Interleukin-4 Receptor alpha Subunit/immunology , Molecular Docking Simulation , Antibodies, Monoclonal, Humanized/chemistry , Antibodies, Monoclonal, Humanized/metabolism , Antigens/genetics , Antigens/metabolism , Binding Sites, Antibody , ErbB Receptors/immunology , ErbB Receptors/metabolism , HEK293 Cells , Humans , Interleukin-4 Receptor alpha Subunit/genetics , Interleukin-4 Receptor alpha Subunit/metabolism , Mutation , Protein Binding , Protein Conformation , Structure-Activity Relationship
9.
Metabolism ; 115: 154458, 2021 02.
Article in English | MEDLINE | ID: mdl-33278413

ABSTRACT

BACKGROUND: Polycystic ovary syndrome (PCOS) is often associated with higher levels of LH, and arrested ovarian follicular growth. The direct impact of high LH on FSH mediated metabolic responses in PCOS patients is not clearly understood. METHOD: In order to investigate the impact of FSH and LH on glucose metabolism in preovulatory granulosa cells (GCs), we used [U14C]-2 deoxyglucose, D-[U14C]-glucose or 2-NBD glucose to analyse glucose uptake and its incorporation into glycogen. To reproduce the high androgenic potential in PCOS patients, we administered hCG both in vitro and in vivo. The role of IRS-2/PI3K/Akt2 pathway was studied after knockdown with specific siRNA. Immunoprecipitation and specific assays were used for the assessment of IRS-2, glycogen synthase and protein phosphatase 1. Furthermore, we examined the in vivo effects of hCG on FSH mediated glycogen increase in normal and PCOS rat model. HEK293 cells co-expressing FSHR and LHR were used to demonstrate glucose uptake and BRET change by FSH and hCG. RESULTS: In normal human and rat granulosa cells, FSH is more potent than hCG in stimulating glucose uptake, however glycogen synthesis was significantly upregulated only by FSH through increase in activity of glycogen synthase via IRS-2/PI3K/Akt2 pathway. On the contrary, an impaired FSH-stimulated glucose uptake and glycogen synthesis in granulosa cells of PCOS-patients indicated a selective defect in FSHR activation. Further, in normal human granulosa cells, and in immature rat model, the impact of hCG on FSH responses was such that it inhibited the FSH-mediated glucose uptake as well as glycogen synthesis through inhibition of FSH-stimulated IRS-2 expression. These findings were further validated in HEK293 cells overexpressing Flag-LHR and HA-FSHR, where high hCG inhibited the FSH-stimulated glucose uptake. Notably, an increased BRET change was observed in HEK293 cells expressing FSHR-Rluc8 and LHR-Venus possibly suggesting increased heteromerization of LHR and FSHR in the presence of both hCG and FSH in comparison to FSH or hCG alone. CONCLUSION: Our findings confirm a selective attenuation of metabolic responses to FSH such as glucose uptake and glycogen synthesis by high activation level of LHR leading to the inhibition of IRS-2 pathway, resulting in depleted glycogen stores and follicular growth arrest in PCOS patients.


Subject(s)
Follicle Stimulating Hormone/pharmacology , Glucose/metabolism , Granulosa Cells/drug effects , Luteinizing Hormone/pharmacology , Polycystic Ovary Syndrome/metabolism , Animals , Disease Models, Animal , Estradiol/pharmacology , Female , Granulosa Cells/metabolism , HEK293 Cells , Humans , Insulin Receptor Substrate Proteins/metabolism , Rats
10.
Mol Cell Endocrinol ; 518: 110877, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32569857

ABSTRACT

The reproductive neuroendocrine axis, or hypothalamo-pituitary-gonadal (HPG) axis, is a paragon of complex biological system involving numerous cell types, spread over several anatomical levels communicating through entangled endocrine feedback loops. The HPG axis exhibits remarkable dynamic behaviors on multiple time and space scales, which are an inexhaustible source of studies for mathematical and computational biology. In this review, we will describe a variety of modeling approaches of the HPG axis from a cellular endocrinology viewpoint. We will in particular investigate the questions raised by some of the most striking features of the HPG axis: (i) the pulsatile secretion of hypothalamic and pituitary hormones, and its counterpart, the cell signaling induced by frequency-encoded hormonal signals, and (ii) the dual, gametogenic and glandular function of the gonads, which relies on the tight control of the somatic cell populations ensuring the proper maturation and timely release of the germ cells.


Subject(s)
Endocrine Cells/physiology , Gonads/cytology , Hypothalamo-Hypophyseal System/cytology , Models, Theoretical , Pituitary-Adrenal System/cytology , Animals , Endocrine Cells/cytology , Endocrinology/methods , Female , Gonads/physiology , Humans , Hypothalamo-Hypophyseal System/physiology , Male , Pituitary-Adrenal System/physiology , Reproduction/physiology , Signal Transduction/physiology
11.
J Clin Med ; 9(4)2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32260182

ABSTRACT

BACKGROUND: Human reproduction is regulated by the combined action of the follicle-stimulating hormone (FSH) and the luteinizing hormone (LH) on the gonads. Although FSH is largely used in female reproduction, in particular in women attending assisted reproductive techniques to stimulate multi-follicular growth, its efficacy in men with idiopathic infertility is not clearly demonstrated. Indeed, whether FSH administration improves fertility in patients with hypogonadotropic hypogonadism, the therapeutic benefit in men presenting alterations in sperm production despite normal FSH serum levels is still unclear. In the present review, we evaluate the potential pharmacological benefits of FSH administration in clinical practice. METHODS: This is a narrative review, describing the FSH physiological role in spermatogenesis and its potential therapeutic action in men. RESULTS: The FSH role on male fertility is reviewed starting from the physiological control of spermatogenesis, throughout its mechanism of action in Sertoli cells, the genetic regulation of its action on spermatogenesis, until the therapeutic options available to improve sperm production. CONCLUSION: FSH administration in infertile men has potential benefits, although its action should be considered by evaluating its synergic action with testosterone, and well-controlled, powerful trials are required. Prospective studies and new compounds could be developed in the near future.

12.
Int J Mol Sci ; 21(7)2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32218314

ABSTRACT

Follicle-stimulating hormone (FSH) supports spermatogenesis acting via its receptor (FSHR), which activates trophic effects in gonadal Sertoli cells. These pathways are targeted by hormonal drugs used for clinical treatment of infertile men, mainly belonging to sub-groups defined as hypogonadotropic hypogonadism or idiopathic infertility. While, in the first case, fertility may be efficiently restored by specific treatments, such as pulsatile gonadotropin releasing hormone (GnRH) or choriogonadotropin (hCG) alone or in combination with FSH, less is known about the efficacy of FSH in supporting the treatment of male idiopathic infertility. This review focuses on the role of FSH in the clinical approach to male reproduction, addressing the state-of-the-art from the little data available and discussing the pharmacological evidence. New compounds, such as allosteric ligands, dually active, chimeric gonadotropins and immunoglobulins, may represent interesting avenues for future personalized, pharmacological approaches to male infertility.


Subject(s)
Follicle Stimulating Hormone/therapeutic use , Infertility, Male/drug therapy , Animals , Follicle Stimulating Hormone/metabolism , Humans , Hypogonadism , Male , Signal Transduction
13.
Article in English | MEDLINE | ID: mdl-31139153

ABSTRACT

The glycoprotein follicle-stimulating hormone (FSH) acts on gonadal target cells, hence regulating gametogenesis. The transduction of the hormone-induced signal is mediated by the FSH-specific G protein-coupled receptor (FSHR), of which the action relies on the interaction with a number of intracellular effectors. The stimulatory Gαs protein is a long-time known transducer of FSH signaling, mainly leading to intracellular cAMP increase and protein kinase A (PKA) activation, the latter acting as a master regulator of cell metabolism and sex steroid production. While in vivo data clearly demonstrate the relevance of PKA activation in mediating gametogenesis by triggering proliferative signals, some in vitro data suggest that pro-apoptotic pathways may be awakened as a "dark side" of cAMP/PKA-dependent steroidogenesis, in certain conditions. P38 mitogen-activated protein kinases (MAPK) are players of death signals in steroidogenic cells, involving downstream p53 and caspases. Although it could be hypothesized that pro-apoptotic signals, if relevant, may be required for regulating atresia of non-dominant ovarian follicles, they should be transient and counterbalanced by mitogenic signals upon FSHR interaction with opposing transducers, such as Gαi proteins and ß-arrestins. These molecules modulate the steroidogenic pathway via extracellular-regulated kinases (ERK1/2), phosphatidylinositol-4,5-bisphosphate 3-kinases (PI3K)/protein kinase B (AKT), calcium signaling and other intracellular signaling effectors, resulting in a complex and dynamic signaling network characterizing sex- and stage-specific gamete maturation. Even if the FSH-mediated signaling network is not yet entirely deciphered, its full comprehension is of high physiological and clinical relevance due to the crucial role covered by the hormone in regulating human development and reproduction.

14.
Article in English | MEDLINE | ID: mdl-30930853

ABSTRACT

Knowledge on G protein-coupled receptor (GPCRs) structure and mechanism of activation has profoundly evolved over the past years. The way drugs targeting this family of receptors are discovered and used has also changed. Ligands appear to bind a growing number of GPCRs in a competitive or allosteric manner to elicit balanced signaling or biased signaling (i.e., differential efficacy in activating or inhibiting selective signaling pathway(s) compared to the reference ligand). These novel concepts and developments transform our understanding of the follicle-stimulating hormone (FSH) receptor (FSHR) biology and the way it could be pharmacologically modulated in the future. The FSHR is expressed in somatic cells of the gonads and plays a major role in reproduction. When compared to classical GPCRs, the FSHR exhibits intrinsic peculiarities, such as a very large NH2-terminal extracellular domain that binds a naturally heterogeneous, large heterodimeric glycoprotein, namely FSH. Once activated, the FSHR couples to Gαs and, in some instances, to other Gα subunits. G protein-coupled receptor kinases and ß-arrestins are also recruited to this receptor and account for its desensitization, trafficking, and intracellular signaling. Different classes of pharmacological tools capable of biasing FSHR signaling have been reported and open promising prospects both in basic research and for therapeutic applications. Here we provide an updated review of the most salient peculiarities of FSHR signaling and its selective modulation.

15.
Methods Mol Biol ; 1957: 177-194, 2019.
Article in English | MEDLINE | ID: mdl-30919355

ABSTRACT

ß-arrestins are so-called hub proteins: they make complexes with many different partners, assembling functional complexes, and thereby fulfilling their biological function. The importance of this process in G protein-coupled receptor (GPCR) signalling has been fully demonstrated for many different receptors. For direct interactions, determining the interface regions, on ß-arrestins and on the partners, is crucial for understanding the function of the complex. Indeed, this brings information on which proteins can interact simultaneously with ß-arrestins, or, on the contrary, which partners are exclusive. We present here a method in two steps: protein-protein docking allows finding a limited number of peptides predicted to be involved in the interaction, and then experimental approaches that might be used for validating the prediction.


Subject(s)
Molecular Biology/methods , beta-Arrestins/metabolism , Amino Acid Sequence , Fluorescence , Humans , Interferometry , Peptides/chemistry , Peptides/metabolism , Protein Binding , Reproducibility of Results , beta-Arrestins/chemistry
16.
Methods Mol Biol ; 1957: 195-215, 2019.
Article in English | MEDLINE | ID: mdl-30919356

ABSTRACT

Dynamic models of signaling networks allow the formulation of hypotheses on the topology and kinetic rate laws characterizing a given molecular network, in-depth exploration, and confrontation with kinetic biological data. Despite its standardization, dynamic modeling of signaling networks still requires successive technical steps that need to be carefully performed. Here, we detail these steps by going through the mathematical and statistical framework. We explain how it can be applied to the understanding of ß-arrestin-dependent signaling networks. We illustrate our methodology through the modeling of ß-arrestin recruitment kinetics at the follicle-stimulating hormone (FSH) receptor supported by in-house bioluminescence resonance energy transfer (BRET) data.


Subject(s)
Models, Biological , Signal Transduction , beta-Arrestins/metabolism , Bioluminescence Resonance Energy Transfer Techniques , Computer Simulation , HEK293 Cells , Humans , Models, Statistical
17.
J Immunol ; 201(10): 3096-3105, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30322966

ABSTRACT

Abs are very efficient drugs, ∼70 of them are already approved for medical use, over 500 are in clinical development, and many more are in preclinical development. One important step in the characterization and protection of a therapeutic Ab is the determination of its cognate epitope. The gold standard is the three-dimensional structure of the Ab/Ag complex by crystallography or nuclear magnetic resonance spectroscopy. However, it remains a tedious task, and its outcome is uncertain. We have developed MAbTope, a docking-based prediction method of the epitope associated with straightforward experimental validation procedures. We show that MAbTope predicts the correct epitope for each of 129 tested examples of Ab/Ag complexes of known structure. We further validated this method through the successful determination, and experimental validation (using human embryonic kidney cells 293), of the epitopes recognized by two therapeutic Abs targeting TNF-α: certolizumab and golimumab.


Subject(s)
Antibodies, Monoclonal/chemistry , Epitope Mapping/methods , Molecular Docking Simulation/methods , HEK293 Cells , Humans
18.
Expert Opin Drug Discov ; 13(9): 799-813, 2018 09.
Article in English | MEDLINE | ID: mdl-30073857

ABSTRACT

INTRODUCTION: Pituitary gonadotropins play an essential and pivotal role in the control of human and animal reproduction within the hypothalamic-pituitary-gonadal (HPG) axis. The computational modeling of pituitary gonadotropin signaling encompasses phenomena of different natures such as the dynamic encoding of gonadotropin secretion, and the intracellular cascades triggered by gonadotropin binding to their cognate receptors, resulting in a variety of biological outcomes. Areas covered: The authors provide an overview of the historical and ongoing issues in modeling and data analysis related to gonadotropin secretion in the field of both physiology and neuroendocrinology. They mention the different mathematical formalisms involved, their interest and limits. They also discuss open statistical questions in signal analysis associated with key endocrine issues and review recent advances in the modeling of the intracellular pathways activated by gonadotropins, which yields promising development for innovative approaches in drug discovery. Expert opinion: The greatest challenge to be tackled in computational modeling of pituitary gonadotropin signaling is the embedding of gonadotropin signaling within its natural multi-scale environment, from the single cell level, to the organic and whole HPG level. The development of modeling approaches of G protein-coupled receptor signaling, together with multicellular systems biology may lead to unexampled mechanistic understanding with critical expected fallouts in the therapeutic management of reproduction.


Subject(s)
Computer Simulation , Drug Discovery/methods , Gonadotropins, Pituitary/metabolism , Animals , Humans , Hypothalamo-Hypophyseal System/physiology , Models, Theoretical , Receptors, G-Protein-Coupled , Reproduction/physiology , Signal Transduction/physiology , Systems Biology/methods
19.
Endocrinology ; 159(8): 3020-3035, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29982321

ABSTRACT

FSH is synthesized in the pituitary by gonadotrope cells. By binding to and interacting with its cognate receptor [FSH receptor (FSHR)] in the gonads, this gonadotropin plays a key role in the control of gonadal function and reproduction. Upon activation, the FSHR undergoes conformational changes leading to transduction of intracellular signals, including dissociation of G protein complexes into components and activation of several associated interacting partners, which concertedly regulate downstream effectors. The canonical Gs/cAMP/protein kinase A pathway, considered for a long time as the sole effector of FSHR-mediated signaling, is now viewed as one of several mechanisms employed by this receptor to transduce intracellular signals in response to the FSH stimulus. This complex network of signaling pathways allows for a fine-tuning regulation of the gonadotropic stimulus, where activation/inhibition of its multiple components vary depending on the cell context, cell developmental stage, and concentration of associated receptors and corresponding ligands. Activation of these multiple signaling modules eventually converge to the hormone-integrated biological response, including survival, proliferation and differentiation of target cells, synthesis and secretion of paracrine/autocrine regulators, and, at the molecular level, functional selectivity and differential gene expression. In this mini-review, we discuss the complexity of FSHR-mediated intracellular signals activated in response to ligand stimulation. A better understanding of the signaling pathways involved in FSH action might potentially influence the development of new therapeutic strategies for reproductive disorders.


Subject(s)
Follicle Stimulating Hormone/metabolism , Receptors, FSH/metabolism , Reproduction , Signal Transduction , Cell Differentiation , Cell Proliferation , Cell Survival , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Gene Expression , Humans , Ligands
20.
Sci Rep ; 8(1): 7830, 2018 05 18.
Article in English | MEDLINE | ID: mdl-29777117

ABSTRACT

With the dramatic increase of the diversity and the sheer quantity of biological data generated, the construction of comprehensive signaling networks that include precise mechanisms cannot be carried out manually anymore. In this context, we propose a logic-based method that allows building large signaling networks automatically. Our method is based on a set of expert rules that make explicit the reasoning made by biologists when interpreting experimental results coming from a wide variety of experiment types. These rules allow formulating all the conclusions that can be inferred from a set of experimental results, and thus building all the possible networks that explain these results. Moreover, given an hypothesis, our system proposes experimental plans to carry out in order to validate or invalidate it. To evaluate the performance of our method, we applied our framework to the reconstruction of the FSHR-induced and the EGFR-induced signaling networks. The FSHR is known to induce the transactivation of the EGFR, but very little is known on the resulting FSH- and EGF-dependent network. We built a single network using data underlying both networks. This leads to a new hypothesis on the activation of MEK by p38MAPK, which we validate experimentally. These preliminary results represent a first step in the demonstration of a cross-talk between these two major MAP kinases pathways.

SELECTION OF CITATIONS
SEARCH DETAIL
...