Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Ambio ; 51(9): 1907-1920, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35380347

ABSTRACT

Transformation toward a sustainable future requires an earth stewardship approach to shift society from its current goal of increasing material wealth to a vision of sustaining built, natural, human, and social capital-equitably distributed across society, within and among nations. Widespread concern about earth's current trajectory and support for actions that would foster more sustainable pathways suggests potential social tipping points in public demand for an earth stewardship vision. Here, we draw on empirical studies and theory to show that movement toward a stewardship vision can be facilitated by changes in either policy incentives or social norms. Our novel contribution is to point out that both norms and incentives must change and can do so interactively. This can be facilitated through leverage points and complementarities across policy areas, based on values, system design, and agency. Potential catalysts include novel democratic institutions and engagement of non-governmental actors, such as businesses, civic leaders, and social movements as agents for redistribution of power. Because no single intervention will transform the world, a key challenge is to align actions to be synergistic, persistent, and scalable.


Subject(s)
Policy , Humans
2.
Ecosystems ; 25(3): 697-711, 2022.
Article in English | MEDLINE | ID: mdl-34512142

ABSTRACT

The increasing frequency of extreme events, exogenous and endogenous, poses challenges for our societies. The current pandemic is a case in point; but "once-in-a-century" weather events are also becoming more common, leading to erosion, wildfire and even volcanic events that change ecosystems and disturbance regimes, threaten the sustainability of our life-support systems, and challenge the robustness and resilience of societies. Dealing with extremes will require new approaches and large-scale collective action. Preemptive measures can increase general resilience, a first line of protection, while more specific reactive responses are developed. Preemptive measures also can minimize the negative effects of events that cannot be avoided. In this paper, we first explore approaches to prevention, mitigation and adaptation, drawing inspiration from how evolutionary challenges have made biological systems robust and resilient, and from the general theory of complex adaptive systems. We argue further that proactive steps that go beyond will be necessary to reduce unacceptable consequences.

3.
Reg Environ Change ; 21(2): 35, 2021.
Article in English | MEDLINE | ID: mdl-34720738

ABSTRACT

Small-scale fisheries are critically important for livelihoods around the world, particularly in tropical regions. However, climate variability and anthropogenic climate change may seriously impact small-scale fisheries by altering the abundance and distribution of target species. Social relationships between fishery users, such as fish traders, can determine how each individual responds and is affected by changes in fisheries. These informal cooperative and competitive relationships provide access, support, and incentives for fishing and affect the distribution of benefits. Yet, individuals' actions and impacts on individuals are often the primary focus of the economic analyses informing small-scale fisheries' formal management. This focus dismisses relevant social relationships. We argue that this leads to a disconnect between reality and its model representation used in formal management, which may reduce formal fisheries management's efficiency and efficacy and potentially trigger adverse consequences. Here, we examine this argument by comparing the predictions of a simple bioeconomic fishery model with those of a social-ecological model that incorporates the dynamics of cooperative relationships between fish traders. We illustrate model outcomes using an empirical case study in the Mexican Humboldt squid fishery. We find that (1) the social-ecological model with relationship dynamics substantially improves accuracy in predicting observed fishery variables to the simple bioeconomic model. (2) Income inequality outcomes are associated with changes in cooperative trade relationships. When environmental temperature is included in the model as a driver of species production dynamics, we find that climate-driven temperature variability drives a decline in catch that, in turn, reduce fishers' income. We observe an offset of this loss in income by including cooperative relationships between fish traders (oligopoly) in the model. These relationships break down following species distribution changes and result in an increase in prices fishers receive. Finally, (3) our social-ecological model simulations show that the current fishery development program, which seeks to increase fishers' income through an increase in domestic market demand, is supported by predictions from the simple bioeconomic model, may increase income inequality between fishers and traders. Our findings highlight the real and urgent need to re-think fisheries management models in the context of small-scale fisheries and climate change worldwide to encompass social relationship dynamics. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at (10.1007/s10113-021-01747-5).

4.
Bioscience ; 70(12): 1139-1144, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33376456

ABSTRACT

Global environmental change challenges humanity because of its broad scale, long-lasting, and potentially irreversible consequences. Key to an effective response is to use an appropriate scientific lens to peer through the mist of uncertainty that threatens timely and appropriate decisions surrounding these complex issues. Identifying such corridors of clarity could help understanding critical phenomena or causal pathways sufficiently well to justify taking policy action. To this end, we suggest four principles: Follow the strongest and most direct path between policy decisions on outcomes, focus on finding sufficient evidence for policy purpose, prioritize no-regrets policies by avoiding options with controversial, uncertain, or immeasurable benefits, aim for getting the big picture roughly right rather than focusing on details.

5.
Earths Future ; 8(2): e2019EF001377, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32715010

ABSTRACT

The planetary boundaries framework defines the "safe operating space for humanity" represented by nine global processes that can destabilize the Earth System if perturbed. The water planetary boundary attempts to provide a global limit to anthropogenic water cycle modifications, but it has been challenging to translate and apply it to the regional and local scales at which water problems and management typically occur. We develop a cross-scale approach by which the water planetary boundary could guide sustainable water management and governance at subglobal contexts defined by physical features (e.g., watershed or aquifer), political borders (e.g., city, nation, or group of nations), or commercial entities (e.g., corporation, trade group, or financial institution). The application of the water planetary boundary at these subglobal contexts occurs via two approaches: (i) calculating fair shares, in which local water cycle modifications are compared to that context's allocation of the global safe operating space, taking into account biophysical, socioeconomic, and ethical considerations; and (ii) defining a local safe operating space, in which interactions between water stores and Earth System components are used to define local boundaries required for sustaining the local water system in stable conditions, which we demonstrate with a case study of the Cienaga Grande de Santa Marta wetlands in Colombia. By harmonizing these two approaches, the water planetary boundary can ensure that water cycle modifications remain within both local and global boundaries and complement existing water management and governance approaches.

6.
Proc Natl Acad Sci U S A ; 117(12): 6300-6307, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32165543

ABSTRACT

We consider two aspects of the human enterprise that profoundly affect the global environment: population and consumption. We show that fertility and consumption behavior harbor a class of externalities that have not been much noted in the literature. Both are driven in part by attitudes and preferences that are not egoistic but socially embedded; that is, each household's decisions are influenced by the decisions made by others. In a famous paper, Garrett Hardin [G. Hardin, Science 162, 1243-1248 (1968)] drew attention to overpopulation and concluded that the solution lay in people "abandoning the freedom to breed." That human attitudes and practices are socially embedded suggests that it is possible for people to reduce their fertility rates and consumption demands without experiencing a loss in wellbeing. We focus on fertility in sub-Saharan Africa and consumption in the rich world and argue that bottom-up social mechanisms rather than top-down government interventions are better placed to bring about those ecologically desirable changes.


Subject(s)
Conservation of Natural Resources , Consumer Behavior , Reproductive Behavior , Social Change , Africa South of the Sahara , Developed Countries , Fertility , Humans , Income , Population Growth , Social Conformity , Sustainable Development , Technology
8.
Nat Ecol Evol ; 3(10): 1396-1403, 2019 10.
Article in English | MEDLINE | ID: mdl-31527729

ABSTRACT

Sustainability within planetary boundaries requires concerted action by individuals, governments, civil society and private actors. For the private sector, there is concern that the power exercised by transnational corporations generates, and is even central to, global environmental change. Here, we ask under which conditions transnational corporations could either hinder or promote a global shift towards sustainability. We show that a handful of transnational corporations have become a major force shaping the global intertwined system of people and planet. Transnational corporations in agriculture, forestry, seafood, cement, minerals and fossil energy cause environmental impacts and possess the ability to influence critical functions of the biosphere. We review evidence of current practices and identify six observed features of change towards 'corporate biosphere stewardship', with significant potential for upscaling. Actions by transnational corporations, if combined with effective public policies and improved governmental regulations, could substantially accelerate sustainability efforts.


Subject(s)
Agriculture , Conservation of Natural Resources , Humans
9.
Ambio ; 48(8): 831-854, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30506502

ABSTRACT

Ocean temperatures are rising; species are shifting poleward, and pH is falling (ocean acidification, OA). We summarise current understanding of OA in the brackish Baltic-Skagerrak System, focussing on the direct, indirect and interactive effects of OA with other anthropogenic drivers on marine biogeochemistry, organisms and ecosystems. Substantial recent advances reveal a pattern of stronger responses (positive or negative) of species than ecosystems, more positive responses at lower trophic levels and strong indirect interactions in food-webs. Common emergent themes were as follows: OA drives planktonic systems toward the microbial loop, reducing energy transfer to zooplankton and fish; and nutrient/food availability ameliorates negative impacts of OA. We identify several key areas for further research, notably the need for OA-relevant biogeochemical and ecosystem models, and understanding the ecological and evolutionary capacity of Baltic-Skagerrak ecosystems to respond to OA and other anthropogenic drivers.


Subject(s)
Ecosystem , Seawater , Animals , Baltic States , Ecology , Hydrogen-Ion Concentration , Oceans and Seas
10.
Ambio ; 48(8): 816-830, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30430407

ABSTRACT

Major climate and ecological changes affect the world's oceans leading to a number of responses including increasing water temperatures, changing weather patterns, shrinking ice-sheets, temperature-driven shifts in marine species ranges, biodiversity loss and bleaching of coral reefs. In addition, ocean pH is falling, a process known as ocean acidification (OA). The root cause of OA lies in human policies and behaviours driving society's dependence on fossil fuels, resulting in elevated CO2 concentrations in the atmosphere. In this review, we detail the state of knowledge of the causes of, and potential responses to, OA with particular focus on Swedish coastal seas. We also discuss present knowledge gaps and implementation needs.


Subject(s)
Ecosystem , Seawater , Carbon Dioxide , Climate Change , Coral Reefs , Humans , Hydrogen-Ion Concentration , Oceans and Seas
11.
Ambio ; 46(Suppl 3): 475-485, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29076017

ABSTRACT

We propose a framework to support management that builds on a social-ecological system perspective on the Arctic Ocean. We illustrate the framework's application for two policy-relevant scenarios of climate-driven change, picturing a shift in zooplankton composition and alternatively a crab invasion. We analyse archetypical system dynamics between the socio-economic, the natural, and the governance systems in these scenarios. Our holistic approach can help managers identify looming problems arising from complex system interactions and prioritise among problems and solutions, even when available data are limited.


Subject(s)
Climate Change , Climate , Conservation of Natural Resources , Ecosystem , Arctic Regions , Government , Oceans and Seas
12.
Ambio ; 46(Suppl 3): 341-354, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29067642

ABSTRACT

This introduction to the special issue presents an overview of the wide range of results produced during the European Union project Arctic Climate Change, Economy and Society (ACCESS). This project assessed the main impacts of climate change on Arctic Ocean's geophysical variables and how these impending changes could be expected to impact directly and indirectly on socio-economic activities like transportation, marine sea food production and resource exploitation. Related governance issues were examined. These results were used to develop several management tools that can live on beyond ACCESS. In this article, we synthesize most of the project results in the form of tentative responses to questions raised during the project. By doing so, we put the findings of the project in a broader perspective and introduce the contributions made in the different articles published in this special issue.


Subject(s)
Climate Change , Socioeconomic Factors , Arctic Regions , Commerce
13.
Ambio ; 46(Suppl 3): 368-386, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29080009

ABSTRACT

We review current knowledge about climate change impacts on Arctic seafood production. Large-scale changes in the Arctic marine food web can be expected for the next 40-100 years. Possible future trajectories under climate change for Arctic capture fisheries anticipate the movement of aquatic species into new waters and changed the dynamics of existing species. Negative consequences are expected for some fish stocks but others like the Barents Sea cod (Gadus morhua) may instead increase. Arctic aquaculture that constitutes about 2% of global farming is mainly made up of Norwegian salmon (Salmo salar) farming. The sector will face many challenges in a warmer future and some of these are already a reality impacting negatively on salmon growth. Other more indirect effects from climate change are more uncertain with respect to impacts on the economic conditions of Arctic aquaculture.


Subject(s)
Climate Change , Fisheries , Seafood , Animals , Aquaculture , Arctic Regions , Food Chain , Gadus morhua , Population Dynamics
15.
Proc Natl Acad Sci U S A ; 111(37): 13257-63, 2014 Sep 16.
Article in English | MEDLINE | ID: mdl-25136111

ABSTRACT

Aquaculture is the fastest growing food sector and continues to expand alongside terrestrial crop and livestock production. Using portfolio theory as a conceptual framework, we explore how current interconnections between the aquaculture, crop, livestock, and fisheries sectors act as an impediment to, or an opportunity for, enhanced resilience in the global food system given increased resource scarcity and climate change. Aquaculture can potentially enhance resilience through improved resource use efficiencies and increased diversification of farmed species, locales of production, and feeding strategies. However, aquaculture's reliance on terrestrial crops and wild fish for feeds, its dependence on freshwater and land for culture sites, and its broad array of environmental impacts diminishes its ability to add resilience. Feeds for livestock and farmed fish that are fed rely largely on the same crops, although the fraction destined for aquaculture is presently small (∼4%). As demand for high-value fed aquaculture products grows, competition for these crops will also rise, as will the demand for wild fish as feed inputs. Many of these crops and forage fish are also consumed directly by humans and provide essential nutrition for low-income households. Their rising use in aquafeeds has the potential to increase price levels and volatility, worsening food insecurity among the most vulnerable populations. Although the diversification of global food production systems that includes aquaculture offers promise for enhanced resilience, such promise will not be realized if government policies fail to provide adequate incentives for resource efficiency, equity, and environmental protection.


Subject(s)
Aquaculture , Food Supply , Internationality , Agriculture , Animals , Crops, Agricultural/growth & development , Food/economics , Humans
16.
Ambio ; 40(7): 719-38, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22338712

ABSTRACT

Humanity has emerged as a major force in the operation of the biosphere, with a significant imprint on the Earth System, challenging social-ecological resilience. This new situation calls for a fundamental shift in perspectives, world views, and institutions. Human development and progress must be reconnected to the capacity of the biosphere and essential ecosystem services to be sustained. Governance challenges include a highly interconnected and faster world, cascading social-ecological interactions and planetary boundaries that create vulnerabilities but also opportunities for social-ecological change and transformation. Tipping points and thresholds highlight the importance of understanding and managing resilience. New modes of flexible governance are emerging. A central challenge is to reconnect these efforts to the changing preconditions for societal development as active stewards of the Earth System. We suggest that the Millennium Development Goals need to be reframed in such a planetary stewardship context combined with a call for a new social contract on global sustainability. The ongoing mind shift in human relations with Earth and its boundaries provides exciting opportunities for societal development in collaboration with the biosphere--a global sustainability agenda for humanity.


Subject(s)
Earth, Planet , Animals , Ecology , Fresh Water , Humans
17.
Ambio ; 35(4): 198-202, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16944645

ABSTRACT

Unprecedented global changes caused by human actions challenge society's ability to sustain the desirable features of our planet. This requires proactive management of change to foster both resilience (sustaining those attributes that are important to society in the face of change) and adaptation (developing new socioecological configurations that function effectively under new conditions). The Arctic may be one of the last remaining opportunities to plan for change in a spatially extensive region where many of the ancestral ecological and social processes and feedbacks are still intact. If the feasibility of this strategy can be demonstrated in the Arctic, our improved understanding of the dynamics of change can be applied to regions with greater human modification. Conditions may now be ideal to implement policies to manage Arctic change because recent studies provide the essential scientific understanding, appropriate international institutions are in place, and Arctic nations have the wealth to institute necessary changes, if they choose to do so.


Subject(s)
Adaptation, Physiological , Conservation of Natural Resources , Ecosystem , Models, Biological , Animals , Arctic Regions , Climate , Environmental Monitoring , Greenhouse Effect , Humans
18.
Ambio ; 33(6): 350-5, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15387073

ABSTRACT

Ecosystems at high latitudes are highly dynamic, influenced by a multitude of large-scale disturbances. Due to global change processes these systems may be expected to be particularly vulnerable, affecting the sustained production of renewable wood resources and abundance of plants and animals on which local cultures depend. In this paper, we assess the implications of new understandings of high northern latitude ecosystems and what must be done to manage systems for resilience. We suggest that the focus of land management should shift from recovery from local disturbance to sustaining ecosystem functions in the face of change and disruption. The role of biodiversity as insurance for allowing a system to reorganize and develop during the disturbance and reorganization phases needs to be addressed in management and policy. We emphasize that the current concepts of ecological reserves and protected areas need to be reconsidered to developp dynamic tools for sustainable management of ecosystems in face of change. Characteristics of what may be considered as customary reserves at high latitudes are often consistent with a more dynamic view of reserves. We suggest new directions for addressing biodiversity management in dynamic landscapes at high latitudes, and provide empirical examples of insights from unconventional perspectives that may help improve the potential for sustainable management of biodiversity and the generation of ecosystem services.


Subject(s)
Conservation of Natural Resources , Ecosystem , Environment , Interinstitutional Relations , Social Conditions , Animals , Arctic Regions , Humans , Policy Making
SELECTION OF CITATIONS
SEARCH DETAIL
...