Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(20)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37894792

ABSTRACT

Glucocorticoids are effective anti-inflammatory and immunosuppressive agents. Long-term exposure is associated with multiple metabolic side effects. Spore-forming probiotic bacteria have shown modulatory properties regarding glycolipid metabolism and inflammation. The aim of this study was to evaluate, for the first time, the effects of Bacillus species spores (B. licheniformis, B. indicus, B. subtilis, B. clausii, and B. coagulans) alone and in combination with metformin against dexamethasone-induced systemic disturbances. A total of 30 rats were randomly divided into 5 groups: group 1 served as control (CONTROL), group 2 received dexamethasone (DEXA), group 3 received DEXA and MegaSporeBiotic (MSB), group 4 received DEXA and metformin (MET), and group 5 received DEXA, MSB, and MET. On the last day of the experiment, blood samples and liver tissue samples for histopathological examination were collected. We determined serum glucose, total cholesterol, triglycerides, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-10 (IL-10), catalase, total antioxidant capacity (TAC), and metformin concentration. DEXA administration caused hyperglycemia and hyperlipidemia, increased inflammation cytokines, and decreased antioxidant markers. Treatment with MSB reduced total cholesterol, suggesting that the administration of Bacillus spores-based probiotics to DEXA-treated rats could ameliorate metabolic parameters.


Subject(s)
Bacillus , Metformin , Probiotics , Rats , Animals , Antioxidants/pharmacology , Spores, Bacterial , Probiotics/pharmacology , Dexamethasone/adverse effects , Cholesterol , Inflammation , Metformin/pharmacology
2.
Biomedicines ; 10(2)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35203519

ABSTRACT

Diabetes mellitus is considered to be a global epidemic. The combination of genetic susceptibility and an unhealthy lifestyle is considered to be the main trigger of this metabolic disorder. Recently, there has been increased interest in the roles of gut microbiota as a new potential contributor to this epidemic. Research, in recent years, has contributed to an in-depth characterization of the human microbiome and its associations with various diseases, including metabolic diseases and diabetes mellitus. It is known that diet can change the composition of gut microbiota, but it is unclear how this, in turn, may influence metabolism. The main objective of this review is to evaluate the pathogenetic association between microbiota and diabetes and to explore any new therapeutic agents, including nutraceuticals that may modulate the microbiota. We also look at several mechanisms involved in this process. There is a clear, bidirectional relationship between microbiota and diabetes. Current treatments for diabetes influence microbiota in various ways, some beneficial, but others with still unclear effects. Microbiota-aimed treatments have seen no real-world significant effects on the progression of diabetes and its complications, with more studies needed in order to find a really beneficial agent.

3.
Biomedicines ; 11(1)2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36672580

ABSTRACT

Diabetes mellitus is a disease with multiple gastrointestinal symptoms (diarrhea or constipation, abdominal pain, bloating) whose pathogenesis is multifactorial. The most important of these factors is the enteric nervous system, also known as the "second brain"; a part of the peripheral nervous system capable of functioning independently of the central nervous system. Modulation of the enteric nervous system can be done by short-chain fatty acids, which are bacterial metabolites of the intestinal microbiota. In addition, these acids provide multiple benefits in diabetes, particularly by stimulating glucagon-like peptide 1 and insulin secretion. However, it is not clear what type of nutraceuticals (probiotics, prebiotics, and alimentary supplements) can be used to increase the amount of short-chain fatty acids and achieve the beneficial effects in diabetes. Thus, even if several studies demonstrate that the gut microbiota modulates the activity of the ENS, and thus, may have a positive effect in diabetes, further studies are needed to underline this effect. This review outlines the most recent data regarding the involvement of SCFAs as a disease modifying agent in diabetes mellitus type 2. For an in-depth understanding of the modulation of gut dysbiosis with SCFAs in diabetes, we provide an overview of the interplay between gut microbiota and ENS.

SELECTION OF CITATIONS
SEARCH DETAIL
...