Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Sci Sports Exerc ; 54(2): 258-266, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34559730

ABSTRACT

PURPOSE: We quantified the magnitude of exercise-induced bronchodilation in adult asthmatics under conditions of narrowed and dilated airways. We then assessed the effect of the bronchodilation on ventilatory capacity and the extent of ventilatory limitation during exercise. METHODS: Eleven asthmatics completed three exercise bouts on a cycle ergometer. Exercise was preceded by no treatment (trialCON), inhaled ß2 agonist (trialBD), or a eucapnic voluntary hyperpnea challenge (trialBC). Maximal expiratory flow-volume maneuvers (MEFV) were performed before and within 40 s of exercise cessation. Exercise tidal flow-volume loops were placed within the preexercise and postexercise MEFV curve and used to determine expiratory flow limitation and maximum ventilatory capacity (V˙ECap). RESULTS: Preexercise airway function was different among the trials (forced expiratory volume 1 s during trialCON, trialBD, and trialBC = 3.3 ± 0.8 L, 3.8 ± 0.8 L, and 2.9 ± 0.8 L, respectively; P < 0.05). Maximal expired airflow increased with exercise during all three trials, but the increase was greatest during trialBC (delta forced expiratory volume 1 s during trialCON, trialBD, and trialBC = +12.2% ± 13.1%, +5.2% ± 5.7%, +28.1% ± 15.7%). Thus, the extent of expiratory flow limitation decreased, and V˙ECap increased, when the postexercise MEFV curve was used. During trialCON and trialBC, actual exercise ventilation exceeded V˙ECap calculated with the preexercise MEFV curve in seven and nine subjects, respectively. CONCLUSIONS: These findings demonstrate the critical importance of exercise bronchodilation in the asthmatic with narrowed airways. Of clinical relevance, the results also highlight the importance of assessing airway function during or immediately after exercise in asthmatic persons; otherwise, mechanical limitations to exercise ventilation will be overestimated.


Subject(s)
Anti-Asthmatic Agents/therapeutic use , Asthma/drug therapy , Asthma/physiopathology , Bronchi/physiology , Exercise/physiology , Pulmonary Ventilation/physiology , Adolescent , Adult , Bronchi/physiopathology , Exercise Test , Female , Humans , Male , Middle Aged , Respiratory Function Tests , Treatment Outcome , Young Adult
2.
Eur J Appl Physiol ; 120(3): 625-633, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31989240

ABSTRACT

PURPOSE: Hyperpnea training has been used as a method for both improving exercise performance in healthy persons and improving ventilatory capacity in patients with pulmonary disease. However, voluntary hyperpnea causes acute declines in pulmonary function, but the effects of repeated days of hyperpnea on airway function are not known. The purpose of this study was to determine the effects of repeated normocapnic hyperpnea on daily and post-hyperpnea pulmonary function in healthy adults. METHODS: Ten healthy adults (21 years; 170 cm; 66 kg) completed ten hyperpnea training sessions within 17-days (TR). Training sessions consisted of 20-minutes of normocapnic hyperpnea with gradually increased minute ventilation over the 10 days. Spirometry was assessed at baseline and serially following hyperpnea during each experimental day. A control group (24 years; 171 cm; 66 kg) completed 10 days of spirometry with no hyperpnea training (CON). RESULTS: In both CON and TR subjects, baseline pulmonary function was unchanged during the 10 days. In TR subjects, pulmonary function was decreased at 5 mins after hyperpnea but thereafter increased to pre-hyperpnea values by 30 mins. Furthermore, these changes in pulmonary function were consistent during the 10 training days. In TR subjects, maximal voluntary ventilation decreased by 10.4 ± 8.9% (168-150 L min-1) over the 10 days (P < 0.05), whereas it was unchanged in CON subjects. CONCLUSIONS: These findings demonstrate that voluntary hyperpnea acutely decreases airway function in healthy subjects. However, there does not appear to be a cumulative effect of repeated hyperpnea, as daily pulmonary function was unchanged.


Subject(s)
Breathing Exercises , Lung/physiology , Adult , Female , Healthy Volunteers , Humans , Male , Respiratory Function Tests , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...