Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 150(5): 1068-81, 2012 Aug 31.
Article in English | MEDLINE | ID: mdl-22939629

ABSTRACT

Cellular processes often depend on stable physical associations between proteins. Despite recent progress, knowledge of the composition of human protein complexes remains limited. To close this gap, we applied an integrative global proteomic profiling approach, based on chromatographic separation of cultured human cell extracts into more than one thousand biochemical fractions that were subsequently analyzed by quantitative tandem mass spectrometry, to systematically identify a network of 13,993 high-confidence physical interactions among 3,006 stably associated soluble human proteins. Most of the 622 putative protein complexes we report are linked to core biological processes and encompass both candidate disease genes and unannotated proteins to inform on mechanism. Strikingly, whereas larger multiprotein assemblies tend to be more extensively annotated and evolutionarily conserved, human protein complexes with five or fewer subunits are far more likely to be functionally unannotated or restricted to vertebrates, suggesting more recent functional innovations.


Subject(s)
Multiprotein Complexes/analysis , Protein Interaction Maps , Proteins/chemistry , Proteomics/methods , Humans , Tandem Mass Spectrometry
2.
Infect Immun ; 80(2): 518-28, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22144480

ABSTRACT

Vibrio cholerae responds to environmental changes by altering the protein composition of its outer membrane. In rich medium, V. cholerae expresses almost exclusively the outer membrane porin OmpU, whereas in minimal medium, OmpT is the dominant porin. The supplementation of a minimal medium with a mixture of asparagine, arginine, glutamic acid, and serine (NRES) promotes OmpU production and OmpT repression at levels similar to those seen with rich media. Here we show that the altered Omp profile is not due to an increase in the growth rate in the presence of supplemental amino acids but requires the addition of specific amino acids. The effects of the NRES mix on Omp production were mediated by ToxR, a known regulator of omp gene expression. No changes in the Omp profile were detected in a toxR mutant. Supplementation with the NRES mix resulted in significantly higher levels of ToxR, and the elevated ToxR levels were sufficient to cause a switch in Omp synthesis. The increase in the level of the ToxR protein correlated with an increase in toxR mRNA levels and was observed only when toxR was expressed from its native promoter. ToxS, which is required for ToxR activity, was necessary for NRES-mediated omp gene regulation but not for the increase in ToxR levels. The growth of V. cholerae in the presence of bile acids also resulted in Omp switching, and this required ToxR. However, unlike the NRES mix, bile acids did not increase either ToxR protein or toxR mRNA levels, suggesting a different mechanism of omp gene regulation by bile than that by amino acids.


Subject(s)
Amino Acids/pharmacology , Bacterial Proteins/metabolism , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Bacterial/drug effects , Porins/metabolism , Transcription Factors/metabolism , Vibrio cholerae/metabolism , Adhesins, Bacterial/genetics , Adhesins, Bacterial/metabolism , Amino Acids/metabolism , Animals , Bacterial Proteins/genetics , Bile Acids and Salts/pharmacology , Chemotaxis , Culture Media , DNA-Binding Proteins/genetics , Intestinal Mucosa/metabolism , Mucins/metabolism , Mucins/pharmacology , Porins/genetics , Promoter Regions, Genetic , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rabbits , Temperature , Transcription Factors/genetics , Vibrio cholerae/drug effects
3.
Proteomics ; 10(23): 4209-12, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21089048

ABSTRACT

Proteins play major roles in most biological processes; as a consequence, protein expression levels are highly regulated. While extensive post-transcriptional, translational and protein degradation control clearly influence protein concentration and functionality, it is often thought that protein abundances are primarily determined by the abundances of the corresponding mRNAs. Hence surprisingly, a recent study showed that abundances of orthologous nematode and fly proteins correlate better than their corresponding mRNA abundances. We tested if this phenomenon is general by collecting and testing matching large-scale protein and mRNA expression data sets from seven different species: two bacteria, yeast, nematode, fly, human, and rice. We find that steady-state abundances of proteins show significantly higher correlation across these diverse phylogenetic taxa than the abundances of their corresponding mRNAs (p=0.0008, paired Wilcoxon). These data support the presence of strong selective pressure to maintain protein abundances during evolution, even when mRNA abundances diverge.


Subject(s)
Proteins/metabolism , RNA, Messenger/metabolism , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Gene Expression , Humans/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Species Specificity
4.
Infect Immun ; 73(9): 5706-19, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16113288

ABSTRACT

Vibrio cholerae encodes a small RNA with homology to Escherichia coli RyhB. Like E. coli ryhB, V. cholerae ryhB is negatively regulated by iron and Fur and is required for repression of genes encoding the superoxide dismutase SodB and multiple tricarboxylic acid cycle enzymes. However, V. cholerae RyhB is considerably longer (>200 nucleotides) than the E. coli RNA (90 nucleotides), and it regulates the expression of a variety of genes that are not known to be regulated by RyhB in E. coli, including genes involved in motility, chemotaxis, and biofilm formation. A mutant with a deletion in ryhB had reduced chemotactic motility in low-iron medium and was unable to form wild-type biofilms. The defect in biofilm formation was suppressed by growing the mutant in the presence of excess iron or succinate. The wild-type strain showed reduced biofilm formation in iron-deficient medium, further supporting a role for iron in normal biofilm formation. The ryhB mutant was not defective for colonization in a mouse model and appeared to be at a slight advantage when competing with the wild-type parental strain. Other genes whose expression was influenced by RyhB included those encoding the outer membrane porins OmpT and OmpU, several iron transport systems, and proteins containing heme or iron-sulfur clusters. These data indicate that V. cholerae RyhB has diverse functions, ranging from iron homeostasis to the regulation of biofilm formation.


Subject(s)
Biofilms , RNA, Bacterial/physiology , Regulon , Vibrio cholerae/genetics , Bacterial Proteins/physiology , Base Sequence , Gene Expression Regulation, Bacterial/physiology , Iron/metabolism , Molecular Sequence Data , Mutation , Oligonucleotide Array Sequence Analysis , RNA, Bacterial/chemistry , RNA, Bacterial/genetics , Repressor Proteins/physiology , Sequence Analysis, RNA , Succinic Acid/metabolism , Transcription Initiation Site
SELECTION OF CITATIONS
SEARCH DETAIL
...