Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 361: 130154, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34077882

ABSTRACT

The implementation of Raman and infrared spectroscopy with three data fusion strategies to predict pH and % IMF content of red meat was investigated. Raman and FTIR systems were utilized to assess quality parameters of intact red meat. Quantitative models were built using PLS, with model performances assessed with respect to the determination coefficient (R2), root mean square error and normalized root mean square error (NRMSEP). Results obtained on validation against an independent test set show that the high-level fusion strategy had the best performance in predicting the observed pH; with RP2 and NRMSEP values of 0.73 and 12.9% respectively, whereas low-level fusion strategy showed promise in predicting % IMF (NRMSEP = 8.5%). The fusion of data from more than one technique at low and high level resulted in improvement in the model performances; highlighting the possibility of information enhancement.


Subject(s)
Food Analysis/methods , Red Meat/analysis , Spectroscopy, Fourier Transform Infrared/methods , Spectrum Analysis, Raman/methods , Animals , Food Quality , Hydrogen-Ion Concentration , Signal Processing, Computer-Assisted
2.
Food Chem ; 343: 128441, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33127228

ABSTRACT

With increasing demand for fast and reliable techniques for intact meat discrimination, we explore the potential of Raman spectroscopy in combination with three chemometric techniques to discriminate beef, lamb and venison meat samples. Ninety (90) intact red meat samples were measured using Raman spectroscopy, with the acquired spectral data preprocessed using a combination of rubber-band baseline correction, Savitzky-Golay smoothing and standard normal variate transformation. PLSDA and SVM classification were utilized in building classification models for the meat discrimination, whereas PCA was used for exploratory studies. Results obtained using linear and non-linear kernel SVM models yielded sensitivities of over 87 and 90 % respectively, with the corresponding specificities above 88 % on validation against a test set. The PLSDA model yielded over 80 % accuracy in classifying each of the meat specie. PLSDA and SVM classification models in combination with Raman spectroscopy posit an effective technique for red meat discrimination.


Subject(s)
Food Analysis/methods , Meat/analysis , Spectrum Analysis, Raman/methods , Animals , Cattle , Deer , Female , Food Analysis/statistics & numerical data , Least-Squares Analysis , Male , New Zealand , Principal Component Analysis , Red Meat/analysis , Sheep , Species Specificity , Support Vector Machine
3.
Metabolites ; 9(9)2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31540389

ABSTRACT

Despite various direct transmethylation methods having been published and applied to analysis of meat fatty acid (FA) composition, there are still conflicting ideas about the best method for overcoming all the difficulties posed by analysis of complex mixtures of FA in meat. This study performed a systematic investigation of factors affecting a one-step method for quantitative analysis of fatty acids in freeze-dried animal tissue. Approximately 280 reactions, selected using factorial design, were performed to investigate the effect of temperature, reaction time, acid concentration, solvent volume, sample weight and sample moisture. The reaction yield for different types of fatty acids, including saturated, unsaturated (cis, trans and conjugated) and long-chain polyunsaturated fatty acids was determined. The optimised condition for one-step transmethylation was attained with four millilitres 5% sulfuric acid in methanol (as acid catalyst), four millilitres toluene (as co-solvent), 300 mg of freeze-dried meat and incubation at 70 °C for 2 h, with interim mixing by inversion at 30, 60 and 90 min for 15 s. The optimised condition was applied to meat samples from different species, covering a broad range of fat content and offers a simplified and reliable method for analysis of fatty acids from meat samples.

4.
Meat Sci ; 140: 26-37, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29501930

ABSTRACT

Wagyu beef products are marketed as luxury goods to discerning consumers and the lipid content and composition are important drivers of wagyu product value. Wagyu beef is an extensively marbled meat product, well characterised for its tenderness and flavour. In New Zealand, pasture-fed Wagyu-dairy beef production is increasing to meet demand for ultra-premium meat products. Important for these characteristics is the composition of lipid species and their distribution across the carcass. The aim of this study was to analyse the distribution of fatty acids and phospholipids in 26 table cuts, nine co-products and three fat deposits of carcasses from New Zealand pasture-fed Wagyu-dairy cross beef carcasses (n = 5). Phospholipid and fatty acid levels varied across different cuts of the carcass, but typically cuts with high levels of phospholipids also had high levels of omega-3 fatty acids and low levels of saturated fatty acids. This work will be used in the future to examine the potential health aspects of pasture-fed Wagyu beef.


Subject(s)
Fatty Acids/analysis , Phospholipids/analysis , Red Meat/analysis , Adipose Tissue/chemistry , Animals , Cattle , Diet/veterinary , New Zealand
SELECTION OF CITATIONS
SEARCH DETAIL
...