Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Semin Vasc Surg ; 36(4): 487-491, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38030322

ABSTRACT

Thoracic outlet syndrome (TOS) is a rare anatomic condition caused by compression of neurovascular structures as they traverse the thoracic outlet. Depending on the primary structure affected by this spatial narrowing, patients present with one of three types of TOS-venous TOS, arterial TOS, or neurogenic TOS. Compression of the subclavian vein, subclavian artery, or brachial plexus leads to a constellation of symptoms, including venous thrombosis, with associated discomfort and swelling; upper extremity ischemia; and chronic pain due to brachial plexopathy. Standard textbooks have reported a predominance of females patients in the TOS population, with females comprising 70%. However, there have been few comparative studies of sex differences in presentation, treatment, and outcomes for the various types of TOS.


Subject(s)
Brachial Plexus Neuropathies , Brachial Plexus , Thoracic Outlet Syndrome , Humans , Male , Female , Thoracic Outlet Syndrome/diagnosis , Thoracic Outlet Syndrome/etiology , Thoracic Outlet Syndrome/therapy , Brachial Plexus Neuropathies/complications , Subclavian Vein/diagnostic imaging , Subclavian Artery/diagnostic imaging
3.
Forensic Sci Int ; 313: 110351, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32559614

ABSTRACT

When mapped to the environments we interact with on a daily basis, the 36 million microbial cells per hour that humans emit leave a trail of evidence that can be leveraged for forensic analysis. We employed 16S rRNA amplicon sequencing to map unique microbial sequence variants between human skin and building surfaces in three experimental conditions: over time during controlled and uncontrolled incidental interactions with a door handle, and during multiple mock burglaries in ten real residences. We demonstrate that humans (n = 30) leave behind microbial signatures that can be used to track interaction with various surfaces within a building, but the likelihood of accurately detecting the specific burglar for a given home was between 20-25%. Also, the human microbiome contains rare microbial taxa that can be combined to create a unique microbial profile, which when compared to 600 other individuals can improve our ability to link an individual 'burglar' to a residence. In total, 5512 discriminating, non-singleton unique exact sequence variants (uESVs) were identified as unique to an individual, with a minimum of 1 and a maximum of 568, suggesting some people maintain a greater degree of unique taxa compared to our population of 600. Approximate 60-77% of the unique exact sequence variants originated from the hands of participants, and these microbial discriminators spanned 36 phyla but were dominated by the Proteobacteria (34%). A fitted regression generated to determine whether an intruder's uESVs found on door handles in an office decayed over time in the presence or absence of office workers, found no significant shift in proportion of uESVs over time irrespective of the presence of office workers. While it was possible to detect the correct burglars' microbiota as having contributed to the invaded space, the predictions were very weak in comparison to accepted forensic standards. This suggests that at this time 16S rRNA amplicon sequencing of the built environment microbiota cannot be used as a reliable trace evidence standard for criminal investigations.


Subject(s)
Crime , Microbiota , Skin/microbiology , Touch , Forensic Sciences/methods , Humans , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Statistics as Topic
4.
Psychopharmacology (Berl) ; 237(4): 915-941, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32065252

ABSTRACT

Perinatal depression is the most common complication of pregnancy and affects the mother, fetus, and infant. Recent preclinical studies and a limited number of clinical studies have suggested an influence of the gut microbiome on the onset and course of mental health disorders. In this review, we examine the current state of knowledge regarding genetics, epigenetics, heritability, and neuro-immuno-endocrine systems biology in perinatal mood disorders, with a particular focus on the interaction between these factors and the gut microbiome, which is mediated via the gut-brain axis. We also provide an overview of experimental and analytical methods that are currently available to researchers interested in elucidating the influence of the gut microbiome on mental health disorders during pregnancy and postpartum.


Subject(s)
Depressive Disorder, Major/therapy , Gastrointestinal Microbiome/physiology , Precision Medicine/methods , Pregnancy Complications/therapy , Brain/metabolism , Depressive Disorder, Major/metabolism , Depressive Disorder, Major/psychology , Female , Humans , Infant , Microbiota/physiology , Postpartum Period/metabolism , Postpartum Period/psychology , Precision Medicine/psychology , Pregnancy , Pregnancy Complications/metabolism , Pregnancy Complications/psychology
5.
Microbiome ; 7(1): 70, 2019 05 02.
Article in English | MEDLINE | ID: mdl-31046835

ABSTRACT

BACKGROUND: The microbiome of the built environment has important implications for human health and wellbeing; however, bidirectional exchange of microbes between occupants and surfaces can be confounded by lifestyle, architecture, and external environmental exposures. Here, we present a longitudinal study of United States Air Force Academy cadets (n = 34), which have substantial homogeneity in lifestyle, diet, and age, all factors that influence the human microbiome. We characterized bacterial communities associated with (1) skin and gut samples from roommate pairs, (2) four built environment sample locations inside the pairs' dormitory rooms, (3) four built environment sample locations within shared spaces in the dormitory, and (4) room-matched outdoor samples from the window ledge of their rooms. RESULTS: We analyzed 2,170 samples, which generated 21,866 unique amplicon sequence variants. Linear convergence of microbial composition and structure was observed between an occupants' skin and the dormitory surfaces that were only used by that occupant (i.e., desk). Conversely, bacterial community beta diversity (weighted Unifrac) convergence between the skin of both roommates and the shared dormitory floor between the two cadet's beds was not seen across the entire study population. The sampling period included two semester breaks in which the occupants vacated their rooms; upon their return, the beta diversity similarity between their skin and the surfaces had significantly decreased compared to before the break (p < 0.05). There was no apparent convergence between the gut and building microbiota, with the exception of communal bathroom door-handles, which suggests that neither co-occupancy, diet, or lifestyle homogenization had a significant impact on gut microbiome similarity between these cadets over the observed time frame. As a result, predictive classifier models were able to identify an individual more accurately based on the gut microbiota (74%) compared to skin (51%). CONCLUSIONS: To the best of our knowledge, this is the first study to show an increase in skin microbial similarity of two individuals who start living together for the first time and who are not genetically related or romantically involved. Cohabitation was significantly associated with increased skin microbiota similarity but did not significantly influence the gut microbiota. Following a departure from the occupied space of several weeks, the skin microbiota, but not the gut microbiota, showed a significant reduction in similarity relative to the building. Overall, longitudinal observation of these dynamics enables us to dissect the influence of occupation, diet, and lifestyle factors on occupant and built environment microbial ecology.


Subject(s)
Built Environment , Environmental Microbiology , Housing , Microbiota , Military Personnel , Bacteria/classification , Bacteria/isolation & purification , Cohort Studies , Diet , Female , Gastrointestinal Microbiome , Humans , Longitudinal Studies , Male , RNA, Ribosomal, 16S , Skin/microbiology , United States , Young Adult
6.
Microbiome ; 6(1): 187, 2018 10 19.
Article in English | MEDLINE | ID: mdl-30340631

ABSTRACT

BACKGROUND: Paddy soil dissolved organic matter (DOM) represents a major hotspot for soil biogeochemistry, yet we know little about its chemodiversity let alone the microbial community that shapes it. Here, we leveraged ultrahigh-resolution mass spectrometry, amplicon, and metagenomic sequencing to characterize the molecular distribution of DOM and the taxonomic and functional microbial diversity in paddy soils across China. We hypothesized that variances in microbial community significantly associate with changes in soil DOM molecular composition. RESULTS: We report that both microbial and DOM profiles revealed geographic patterns that were associated with variation in mean monthly precipitation, mean annual temperature, and pH. DOM molecular diversity was significantly correlated with microbial taxonomic diversity. An increase in DOM molecules categorized as peptides, carbohydrates, and unsaturated aliphatics, and a decrease in those belonging to polyphenolics and polycyclic aromatics, significantly correlated with proportional changes in some of the microbial taxa, such as Syntrophobacterales, Thermoleophilia, Geobacter, Spirochaeta, Gaiella, and Defluviicoccus. DOM composition was also associated with the relative abundances of the microbial metabolic pathways, such as anaerobic carbon fixation, glycolysis, lignolysis, fermentation, and methanogenesis. CONCLUSIONS: Our study demonstrates the continental-scale distribution of DOM is significantly correlated with the taxonomic profile and metabolic potential of the rice paddy microbiome. Abiotic factors that have a distinct effect on community structure can also influence the chemodiversity of DOM and vice versa. Deciphering these associations and the underlying mechanisms can precipitate understanding of the complex ecology of paddy soils, as well as help assess the effects of human activities on biogeochemistry and greenhouse gas emissions in paddy soils.


Subject(s)
Bacteria/classification , Bacteria/metabolism , Fresh Water/chemistry , Fresh Water/microbiology , Microbiota/genetics , Organic Chemicals/analysis , Oryza/microbiology , Soil/chemistry , Bacteria/genetics , Bacteria/isolation & purification , Carbon Cycle , Geography , Mass Spectrometry , Metagenome/genetics , Soil Microbiology
7.
Curr Opin Biotechnol ; 51: 146-153, 2018 06.
Article in English | MEDLINE | ID: mdl-29453029

ABSTRACT

Recent research has shown that the microbiome-a collection of microorganisms, including bacteria, fungi, and viruses, living on and in a host-are of extraordinary importance in human health, even from conception and development in the uterus. Therefore, to further our ability to diagnose disease, to predict treatment outcomes, and to identify novel therapeutics, it is essential to include microbiome and microbial metabolic biomarkers in Systems Biology investigations. In clinical studies or, more precisely, Systems Medicine approaches, we can use the diversity and individual characteristics of the personal microbiome to enhance our resolution for patient stratification. In this review, we explore several Systems Medicine approaches, including Microbiome Wide Association Studies to understand the role of the human microbiome in health and disease, with a focus on 'preventive medicine' or P4 (i.e., personalized, predictive, preventive, participatory) medicine.


Subject(s)
Bacteria/classification , Metabolome , Microbiota , Precision Medicine , Systems Biology/methods , Bacteria/metabolism , Humans
8.
Front Microbiol ; 9: 3095, 2018.
Article in English | MEDLINE | ID: mdl-30619174

ABSTRACT

Hot spring-associated viruses, particularly the archaeal viruses, remain under-examined compared to bacteriophages. Previous metagenomic studies of the Manikaran hot springs in India suggested an abundance of viral DNA, which prompted us to examine the virus-host (bacterial and archaeal) interactions in sediment and microbial mat samples collected from the thermal discharges. Here, we characterize the viruses (both bacterial and archaeal) from this Himalayan hot spring using both metagenomics assembly and electron microscopy. We utilized four shotgun samples from sediment (78-98°C) and two from microbial mats (50°C) to reconstruct 65 bacteriophage genomes (24-200 kb). We also identified 59 archaeal viruses that were notably abundant across the sediment samples. Whole-genome analyses of the reconstructed bacteriophage genomes revealed greater genomic conservation in sediments (65%) compared to microbial mats (49%). However, a minimal phage genome was still maintained across both sediment and microbial mats suggesting a common origin. To complement the metagenomic data, scanning-electron and helium-ion microscopy were used to reveal diverse morphotypes of Caudovirales and archaeal viruses. The genome level annotations provide further evidence for gene-level exchange between virus and host in these hot springs, and augments our knowledgebase for bacteriophages, archaeal viruses and Clustered Regularly Interspaced Short Palindromic Repeat cassettes, which provide a critical resource for studying viromes in extreme natural environments.

9.
PLoS One ; 12(6): e0178755, 2017.
Article in English | MEDLINE | ID: mdl-28594872

ABSTRACT

In this study, 16S rRNA gene sequencing was used to characterize the changes in taxonomic composition and environmental factors significantly influencing bacterial community structure across an annual cycle in the Estuary of Bilbao as well as its tributaries. In spite of this estuary being small and characterized by a short residence time, the environmental factors most highly correlated with the bacterial community mirrored those reported to govern larger estuaries, specifically salinity and temperature. Additionally, bacterial community changes in the estuary appeared to vary with precipitation. For example, an increase in freshwater bacteria (Comamonadaceae and Sphingobacteriaceae) was observed in high precipitation periods compared to the predominately marine-like bacteria (Rhodobacterales and Oceanospirillales) that were found in low precipitation periods. Notably, we observed a significantly higher relative abundance of Comamonadaceae than previously described in other estuaries. Furthermore, anthropic factors could have an impact on this particular estuary's bacterial community structure. For example, ecosystem changes related to the channelization of the estuary likely induced a low dissolved oxygen (DO) concentration, high temperature, and high chlorophyll concentration period in the inner euhaline water in summer (samples with salinity >30 ppt). Those samples were characterized by a high abundance of facultative anaerobes. For instance, OTUs classified as Cryomorphaceae and Candidatus Aquiluna rubra were negatively associated with DO concentration, while Oleiphilaceae was positively associated with DO concentration. Additionally, microorganisms related to biological treatment of wastewater (e.g Bdellovibrio and Zoogloea) were detected in the samples immediately downstream of the Bilbao Wastewater Treatment Plant (WWTP). There are several human activities planned in the region surrounding the Estuary of Bilbao (e.g. sediment draining, architectural changes, etc.) which will likely affect this ecosystem. Therefore, the addition of bacterial community profiling and diversity analysis into the estuary's ongoing monitoring program would provide a more comprehensive view of the ecological status of the Estuary of Bilbao.


Subject(s)
Ecosystem , Estuaries , Fresh Water/microbiology , Bacteria/genetics , Bacteria/isolation & purification , Environmental Monitoring , RNA, Ribosomal, 16S/genetics , Water Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...