Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
JCI Insight ; 9(2)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38258905

ABSTRACT

Pain of unknown etiology is frequent in individuals with the tumor predisposition syndrome neurofibromatosis 1 (NF1), even when tumors are absent. Nerve Schwann cells (SCs) were recently shown to play roles in nociceptive processing, and we find that chemogenetic activation of SCs is sufficient to induce afferent and behavioral mechanical hypersensitivity in wild-type mice. In mouse models, animals showed afferent and behavioral hypersensitivity when SCs, but not neurons, lacked Nf1. Importantly, hypersensitivity corresponded with SC-specific upregulation of mRNA encoding glial cell line-derived neurotrophic factor (GDNF), independently of the presence of tumors. Neuropathic pain-like behaviors in the NF1 mice were inhibited by either chemogenetic silencing of SC calcium or by systemic delivery of GDNF-targeting antibodies. Together, these findings suggest that alterations in SCs directly modulate mechanical pain and suggest cell-specific treatment strategies to ameliorate pain in individuals with NF1.


Subject(s)
Hypersensitivity , Neuralgia , Neurofibromatosis 1 , Animals , Mice , Neurofibromatosis 1/genetics , Nociception , Glial Cell Line-Derived Neurotrophic Factor/genetics , Schwann Cells
2.
Elife ; 112022 03 21.
Article in English | MEDLINE | ID: mdl-35311647

ABSTRACT

Neurofibromatosis type 1 (NF1) is characterized by nerve tumors called neurofibromas, in which Schwann cells (SCs) show deregulated RAS signaling. NF1 is also implicated in regulation of cAMP. We identified the G-protein-coupled receptor (GPCR) P2ry14 in human neurofibromas, neurofibroma-derived SC precursors (SCPs), mature SCs, and mouse SCPs. Mouse Nf1-/- SCP self-renewal was reduced by genetic or pharmacological inhibition of P2ry14. In a mouse model of NF1, genetic deletion of P2ry14 rescued low cAMP signaling, increased mouse survival, delayed neurofibroma initiation, and improved SC Remak bundles. P2ry14 signals via Gi to increase intracellular cAMP, implicating P2ry14 as a key upstream regulator of cAMP. We found that elevation of cAMP by either blocking the degradation of cAMP or by using a P2ry14 inhibitor diminished NF1-/- SCP self-renewal in vitro and neurofibroma SC proliferation in in vivo. These studies identify P2ry14 as a critical regulator of SCP self-renewal, SC proliferation, and neurofibroma initiation.


Subject(s)
Cyclic AMP/metabolism , Neurofibroma , Neurofibromatosis 1 , Receptors, Purinergic P2Y/metabolism , Animals , Cell Self Renewal , Cell Transformation, Neoplastic/metabolism , Disease Models, Animal , Mice , Neurofibroma/genetics , Neurofibroma/metabolism , Neurofibroma/pathology , Neurofibromatosis 1/genetics , Neurofibromatosis 1/pathology , Neurofibromin 1/genetics , Neurofibromin 1/metabolism , Schwann Cells/metabolism
3.
Glia ; 69(8): 1837-1851, 2021 08.
Article in English | MEDLINE | ID: mdl-33507559

ABSTRACT

To facilitate analyses of purinergic signaling in peripheral nerve glia, we review recent literature and catalog purinergic receptor mRNA expression in cultured mouse Schwann cells (SCs). Purinergic signaling can decrease developmental SC proliferation, and promote SC differentiation. The purinergic receptors P2RY2 and P2RX7 are implicated in nerve development and in the ratio of Remak SCs to myelinating SCs in differentiated peripheral nerve. P2RY2, P2RX7, and other receptors are also implicated in peripheral neuropathies and SC tumors. In SC tumors lacking the tumor suppressor NF1, the SC pathway that suppresses SC growth through P2RY2-driven ß-arrestin-mediated AKT signaling is aberrant. SC-released purinergic agonists acting through SC and/or neuronal purinergic receptors activate pain responses. In all these settings, purinergic receptor activation can result in calcium-independent and calcium-dependent release of SC ATP and UDP, growth factors, and cytokines that may contribute to disease and nerve repair. Thus, current research suggests that purinergic agonists and/or antagonists might have the potential to modulate peripheral glia function in development and in disease.


Subject(s)
Peripheral Nervous System Diseases , Schwann Cells , Animals , Mice , Neuroglia/metabolism , Peripheral Nervous System Diseases/metabolism , Receptors, Purinergic/metabolism , Schwann Cells/metabolism , Signal Transduction/physiology
4.
Can Commun Dis Rep ; 46(10): 354-361, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33315999

ABSTRACT

BACKGROUND: Lyme disease is an emerging vector-borne zoonotic disease of increasing public health importance in Canada. As part of its mandate, the Canadian Lyme Disease Research Network (CLyDRN) launched a pan-Canadian sentinel surveillance initiative, the Canadian Lyme Sentinel Network (CaLSeN), in 2019. OBJECTIVES: To create a standardized, national sentinel surveillance network providing a real-time portrait of the evolving environmental risk of Lyme disease in each province. METHODS: A multicriteria decision analysis (MCDA) approach was used in the selection of sentinel regions. Within each sentinel region, a systematic drag sampling protocol was performed in selected sampling sites. Ticks collected during these active surveillance visits were identified to species, and Ixodes spp. ticks were tested for infection with Borrelia burgdorferi, Borrelia miyamotoi, Anaplasma phagocytophilum, Babesia microti and Powassan virus. RESULTS: In 2019, a total of 567 Ixodes spp. ticks (I. scapularis [n=550]; I. pacificus [n=10]; and I. angustus [n=7]) were collected in seven provinces: British Columbia, Manitoba, Ontario, Québec, New Brunswick, Nova Scotia and Prince Edward Island. The highest mean tick densities (nymphs/100 m2) were found in sentinel regions of Lunenburg (0.45), Montréal (0.43) and Granby (0.38). Overall, the Borrelia burgdorferi prevalence in ticks was 25.2% (0%-45.0%). One I. angustus nymph from British Columbia was positive for Babesia microti, a first for the province. The deer tick lineage of Powassan virus was detected in one adult I. scapularis in Nova Scotia. CONCLUSION: CaLSeN provides the first coordinated national active surveillance initiative for tick-borne disease in Canada. Through multidisciplinary collaborations between experts in each province, the pilot year was successful in establishing a baseline for Lyme disease risk across the country, allowing future trends to be detected and studied.

SELECTION OF CITATIONS
SEARCH DETAIL
...