Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
Parasitology ; 151(2): 135-150, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38017606

ABSTRACT

Cestodes of the family Anoplocephalidae parasitize a wide range of usually herbivorous hosts including e.g. rodents, ungulates, primates, elephants and hyraxes. While in some hosts, the epidemiology of the infection is well studied, information is lacking in others. In this study of mountain gorillas in the Virunga Massif, an extensive sample set comprising adult cestodes collected via necropsies, proglottids shed in feces, and finally, fecal samples from both night nests and identified individuals were analysed. Anoplocephala gorillae was the dominant cestode species detected in night nest samples and individually known gorillas, of which only 1 individual hosted a Bertiella sp. It was shown that the 2 species can be distinguished through microscopy based on egg morphology and polymerase chain reaction (PCR) assays for diagnostics of both species were provided. Sequences of mitochondrial (cox 1) and nuclear (ITS1, 18S rDNA, 28S rDNA) markers were used to evaluate the phylogenetic position of the 2 cestodes detected in mountain gorillas. Both types of fecal samples, from night nests and from identified individuals, provided comparable information about the prevalence of anoplocephalid cestodes, although the analysis of samples collected from identified gorilla individuals showed significant intra-individual fluctuation of A. gorillae egg shedding within a short period. Therefore, multiple samples should be examined to obtain reliable data for wildlife health management programmes, especially when application of anthelmintic treatment is considered. However, while A. gorillae is apparently a common symbiont of mountain gorillas, it does not seem to impair the health of its host.


Subject(s)
Cestoda , Gorilla gorilla , Animals , Rwanda/epidemiology , Parks, Recreational , Phylogeny , Cestoda/genetics , DNA, Ribosomal
2.
Am J Primatol ; 85(1): e23439, 2023 01.
Article in English | MEDLINE | ID: mdl-36263518

ABSTRACT

The endangered mountain gorilla (Gorilla beringei beringei) in Rwanda, Uganda, and the Democratic Republic of Congo is frequently in contact with humans through tourism, research activities, and illegal entry of people into protected gorilla habitat. Herpesviruses, which are ubiquitous in primates, have the potential to be shared in any setting where humans and gorillas share habitat. Based on serological findings and clinical observations of orofacial ulcerated lesions resembling herpetic lesions, an alpha-herpesvirus resembling human herpes simplex virus type 1 (HSV-1) has long been suspected to be present in human-habituated mountain gorillas in the wild. While the etiology of orofacial lesions in the wild has not been confirmed, HSV-1 has been suspected in captively-housed mountain gorillas and confirmed in a co-housed confiscated Grauer's gorilla (Gorilla beringei graueri). To better characterize herpesviruses infecting mountain gorillas and to determine the presence/absence of HSV-1 in the free-living population, we conducted a population-wide survey to test for the presence of orally shed herpesviruses. DNA was extracted from discarded chewed plants collected from 294 individuals from 26 groups, and samples were screened by polymerase chain reaction using pan-herpesvirus and HSV-1-specific assays. We found no evidence that human herpesviruses had infected free-ranging mountain gorillas. However, we found gorilla-specific homologs to human herpesviruses, including cytomegaloviruses (GbbCMV-1 and 2), a lymphocryptovirus (GbbLCV-1), and a new rhadinovirus (GbbRHV-1) with similar characteristics (i.e., timing of primary infection, shedding in multiple age groups, and potential modes of transmission) to their human counterparts, human cytomegalovirus, Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus, respectively.


Subject(s)
Epstein-Barr Virus Infections , Gorilla gorilla , Humans , Animals , Gorilla gorilla/genetics , Herpesvirus 4, Human , Rwanda/epidemiology , Uganda
3.
Am J Primatol ; 84(4-5): e23379, 2022 05.
Article in English | MEDLINE | ID: mdl-35389523

ABSTRACT

Infectious diseases have the potential to extirpate populations of great apes. As the interface between humans and great apes expands, zoonoses pose an increasingly severe threat to already endangered great ape populations. Despite recognition of the threat posed by human pathogens to great apes, health monitoring is only conducted for a small fraction of the world's wild great apes (and mostly those that are habituated) meaning that outbreaks of disease often go unrecognized and therefore unmitigated. This lack of surveillance (even in sites where capacity to conduct surveillance is present) is the most significant limiting factor in our ability to quickly detect and respond to emerging infectious diseases in great apes when they first appear. Accordingly, we must create a surveillance system that links disease outbreaks in humans and great apes in time and space, and enables veterinarians, clinicians, conservation managers, national decision makers, and the global health community to respond quickly to these events. Here, we review existing great ape health surveillance programs in African range habitats to identify successes, gaps, and challenges. We use these findings to argue that standardization of surveillance across sites and geographic scales, that monitors primate health in real-time and generates early warnings of disease outbreaks, is an efficient, low-cost step to conserve great ape populations. Such a surveillance program, which we call "Great Ape Health Watch" would lead to long-term improvements in outbreak preparedness, prevention, detection, and response, while generating valuable data for epidemiological research and sustainable conservation planning. Standardized monitoring of great apes would also make it easier to integrate with human surveillance activities. This approach would empower local stakeholders to link wildlife and human health, allowing for near real-time, bidirectional surveillance at the great ape-human interface.


Subject(s)
Ape Diseases , Communicable Diseases, Emerging , Hominidae , Animals , Animals, Wild , Ape Diseases/epidemiology , Ape Diseases/prevention & control , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/prevention & control , Communicable Diseases, Emerging/veterinary , Disease Outbreaks/prevention & control , Disease Outbreaks/veterinary , Zoonoses/epidemiology , Zoonoses/prevention & control
4.
Proc Biol Sci ; 289(1969): 20212564, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35193404

ABSTRACT

Mountain gorillas are particularly inbred compared to other gorillas and even the most inbred human populations. As mountain gorilla skeletal material accumulated during the 1970s, researchers noted their pronounced facial asymmetry and hypothesized that it reflects a population-wide chewing side preference. However, asymmetry has also been linked to environmental and genetic stress in experimental models. Here, we examine facial asymmetry in 114 crania from three Gorilla subspecies using 3D geometric morphometrics. We measure fluctuating asymmetry (FA), defined as random deviations from perfect symmetry, and population-specific patterns of directional asymmetry (DA). Mountain gorillas, with a current population size of about 1000 individuals, have the highest degree of facial FA (explaining 17% of total facial shape variation), followed by Grauer gorillas (9%) and western lowland gorillas (6%), despite the latter experiencing the greatest ecological and dietary variability. DA, while significant in all three taxa, explains relatively less shape variation than FA does. Facial asymmetry correlates neither with tooth wear asymmetry nor increases with age in a mountain gorilla subsample, undermining the hypothesis that facial asymmetry is driven by chewing side preference. An examination of temporal trends shows that stress-induced developmental instability has increased over the last 100 years in these endangered apes.


Subject(s)
Gorilla gorilla , Hominidae , Animals , Facial Asymmetry/veterinary , Genetic Variation , Gorilla gorilla/genetics , Humans
5.
Am J Primatol ; 83(8): e23290, 2021 08.
Article in English | MEDLINE | ID: mdl-34096629

ABSTRACT

The finding of parasites and bacterial pathogens in mountain gorilla feces and oral lesions in gorilla skeletal remains has not been linked to pathological evidence of morbidity or mortality. In the current study, we conducted a retrospective study of digestive tracts including oral cavity, salivary glands, esophagus, stomach, intestines (gastrointestinal tract [GI]), liver, and pancreas of 60 free-ranging mountain gorillas from Uganda, Rwanda, and the Democratic Republic of Congo that died between 1985 and 2007. We reviewed clinical histories and gross pathology reports and examined histological sections. On histology, enteritis (58.6%), gastritis (37.3%), and colitis (29.3%) were the commonest lesions in the tracts. Enteritis and colitis were generally mild, and judged likely to have been subclinical. Gastritis was often chronic and proliferative or ulcerative, and associated with nematodiasis. A gastro-duodenal malignancy (carcinoid) was present in one animal. A number of incidental lesions were identified throughout the tract and cestodes and nematodes were frequently observed grossly and/or histologically. Pigmentation of teeth and tongue were a common finding, but periodontitis and dental attrition were less common than reported from past studies of skeletal remains. Despite observing numerous GI lesions and parasites in this study of deceased free-living mountain gorillas, we confirmed mortality attributable to gastroenteritis in just 8% (5/60) cases, which is less than that described in captive gorillas. Other deaths attributed to digestive tract lesions included cleft palate in an infant, periodontal disease causing systemic infection in an older adult and gastric cancer. Of all the parasitic infections observed, only hepatic capillariasis and gastric nematodiasis were significantly associated with lesions (hepatitis and gastritis, respectively). Understanding GI lesions in this endangered species is key in the management of morbidity associated with GI ailments.


Subject(s)
Gastrointestinal Tract , Gorilla gorilla , Animals , Feces , Retrospective Studies , Rwanda
6.
Sci Rep ; 11(1): 10869, 2021 05 25.
Article in English | MEDLINE | ID: mdl-34035316

ABSTRACT

Conservation efforts have led to the recovery of the endangered mountain gorilla populations. Due to their limited potential for spatial expansion, population densities increased, which may alter the epidemiology of infectious diseases. Recently, clinical gastrointestinal illnesses linked to helminth infections have been recorded in both gorilla populations. To understand drivers and patterns of helminth infections we quantified strongylid and tapeworm infections across both Virunga Massif and Bwindi populations using fecal egg counts. We assessed the impact of age, sex, group size, season and spatial differences used as a proxy, which reflects observed variation in the occurrence of gastrointestinal problems, vegetation types, gorilla subpopulation growth and associated social structure on helminth infections. We revealed striking geographic differences in strongylid infections with higher egg counts mostly in areas with high occurrences of gastrointestinal disease. Increased helminth egg counts were also associated with decreasing group size in some areas. Observed spatial differences may reflect mutual effects of variations in subpopulation growth rates, gorilla social structure, and vegetation associated with altitude across mountain gorilla habitat. Helminth infection intensities in Virunga gorillas were lowest in the youngest and the oldest animals. Elucidating parasite infection patterns of endangered species with low genetic diversity is crucial for their conservation management.


Subject(s)
Ape Diseases/epidemiology , Ape Diseases/parasitology , Biological Variation, Population , Helminthiasis, Animal/epidemiology , Helminthiasis, Animal/parasitology , Animals , Ape Diseases/diagnosis , California/epidemiology , Female , Male , Parks, Recreational
7.
J Med Primatol ; 50(3): 197-200, 2021 06.
Article in English | MEDLINE | ID: mdl-33893639

ABSTRACT

A 30-year-old free-ranging female mountain gorilla (Gorilla beringei beringei) developed a perioral mass that was surgically debulked and diagnosed as malignant melanoma. After tumor recurrence, a canine melanoma vaccine was administered. However, the gorilla died shortly thereafter, and metastases to lymph nodes, lung, liver, and kidney were found post-mortem.


Subject(s)
Dog Diseases , Melanoma , Animals , Dogs , Female , Gorilla gorilla , Melanoma/veterinary
8.
Ecohealth ; 17(4): 449-460, 2020 12.
Article in English | MEDLINE | ID: mdl-33345293

ABSTRACT

Respiratory illness (RI) accounts for a large proportion of mortalities in mountain gorillas (Gorilla beringei beringei), and fatal outbreaks, including disease caused by human metapneumovirus (HMPV) infections, have heightened concern about the risk of human pathogen transmission to this endangered species, which is not only critically important to the biodiversity of its ecosystem but also to the economies of the surrounding human communities. Our goal was to conduct a molecular epidemiologic study to detect the presence of HRSV and HMPV in fecal samples from wild human-habituated free-ranging mountain gorillas in Rwanda and to evaluate the role of these viruses in RI outbreaks. Fecal samples were collected from gorillas with clinical signs of RI between June 2012 and February 2013 and tested by real-time and conventional polymerase chain reaction (PCR) assays; comparison fecal samples were obtained from gorillas without clinical signs of RI sampled during the 2010 Virunga gorilla population census. PCR assays detected HMPV and HRSV first in spiked samples; subsequently, HRSV-A, the worldwide-circulating ON1 genotype, was detected in 12 of 20 mountain gorilla fecal samples collected from gorillas with RI during outbreaks, but not in samples from animals without respiratory illness. Our findings confirmed that pathogenic human respiratory viruses are transmitted to gorillas and that they are repeatedly introduced into mountain gorilla populations from people, attesting to the need for stringent biosecurity measures for the protection of gorilla health.


Subject(s)
Gorilla gorilla , Respiratory Syncytial Virus, Human , Animals , Disease Outbreaks , Ecosystem , Feces , Humans
9.
One Health Outlook ; 2(1): 21, 2020.
Article in English | MEDLINE | ID: mdl-33169111

ABSTRACT

BACKGROUND: The second largest Ebola virus disease (EVD) outbreak began in the Democratic Republic of Congo in July 2018 in North Kivu Province. Data suggest the outbreak is not epidemiologically linked to the 2018 outbreak in Equateur Province, and that independent introduction of Ebola virus (EBOV) into humans occurred. We tested for antibodies to ebolaviruses in febrile patients seeking care in North Kivu Province prior to the EVD outbreak. METHODS: Patients were enrolled between May 2017 and April 2018, before the declared start of the outbreak in eastern DRC. Questionnaires were administered to collect demographic and behavioural information to identify risk factors for exposure. Biological samples were evaluated for ebolavirus nucleic acid, and for antibodies to ebolaviruses. Prevalence of exposure was calculated, and demographic factors evaluated for associations with ebolavirus serostatus. RESULTS: Samples were collected and tested from 272 people seeking care in the Rutshuru Health Zone in North Kivu Province. All patients were negative for filoviruses by PCR. Intial screening by indirect ELISA found that 30 people were reactive to EBOV-rGP. Results were supported by detection of ebolavirus reactive linear peptides using the Serochip platform. Differential screening of all reactive serum samples against the rGP of all six ebolaviruses and Marburg virus (MARV) showed that 29 people exhibited the strongest reactivity to EBOV and one to Bombali virus (BOMV), and western blotting confirmed results. Titers ranged from 1:100 to 1:12,800. Although both sexes and all ages tested positive for antibodies, women were significantly more likely to be positive and the majority of positives were in February 2018. CONCLUSIONS: We provide the first documented evidence of exposure to Ebola virus in people in eastern DRC. We detected antibodies to EBOV in 10% of febrile patients seeking healthcare prior to the declaration of the 2018-2020 outbreak, suggesting early cases may have been missed or exposure ocurred without associated illness. We also report the first known detection of antibodies to BOMV, previously detected in bats in West and East Africa, and show that human exposure to BOMV has occurred. Our data suggest human exposure to ebolaviruses may be more frequent and geographically widespread.

10.
One Health Outlook ; 2: 2, 2020.
Article in English | MEDLINE | ID: mdl-33824945

ABSTRACT

BACKGROUND: Bats provide important ecosystem services; however, current evidence supports that they host several zoonotic viruses, including species of the Coronaviridae family. If bats in close interaction with humans host and shed coronaviruses with zoonotic potential, such as the Severe Acute Respiratory Syndrome virus, spillover may occur. Therefore, strategies aiming to mitigate potential spillover and disease emergence, while supporting the conservation of bats and their important ecological roles are needed. Past research suggests that coronavirus shedding in bats varies seasonally following their reproductive cycle; however, shedding dynamics have been assessed in only a few species, which does not allow for generalization of findings across bat taxa and geographic regions. METHODS: To assess the generalizability of coronavirus shedding seasonality, we sampled hundreds of bats belonging to several species with different life history traits across East Africa at different times of the year. We assessed, via Bayesian modeling, the hypothesis that chiropterans, across species and spatial domains, experience seasonal trends in coronavirus shedding as a function of the reproductive cycle. RESULTS: We found that, beyond spatial, taxonomic, and life history differences, coronavirus shedding is more expected when pups are becoming independent from the dam and that juvenile bats are prone to shed these viruses. CONCLUSIONS: These findings could guide policy aimed at the prevention of spillover in limited-resource settings, where longitudinal surveillance is not feasible, by identifying high-risk periods for coronavirus shedding. In these periods, contact with bats should be avoided (for example, by impeding or forbidding people access to caves). Our proposed strategy provides an alternative to culling - an ethically questionable practice that may result in higher pathogen levels - and supports the conservation of bats and the delivery of their key ecosystem services.

11.
J Zoo Wildl Med ; 51(3): 507-513, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33480526

ABSTRACT

Between December 2002 and September 2017, 125 anesthetic procedures involving free-living and orphaned captive mountain gorillas (Gorilla beringei beringei) were performed in the Virunga Massif and Bwindi Impenetrable Forest in East-Central Africa. Of these 125 immobilizations, 114 records were complete enough for inclusion into this study. Anesthetic and physiologic data from these 114 cases were analyzed, of which 57 used medetomidine-ketamine and 57 used dexmedetomidine-ketamine administered intramuscularly. With the use of estimated weights, the mean induction dosage (mg/kg ± SD) for medetomidine was 0.033 ± 0.003 (n = 42), for dexmedetomidine 0.018 ± 0.005 (n = 53), and for ketamine 3.66 ± 0.95 (n = 95). Mean time from injection of induction dose to recumbency was 6.8 ± 3.1 min (n = 74). Atipamezole was administered intramuscularly to reverse anesthesia. First signs of recovery occurred at 5.0 ± 4.0 min, and full recovery was 19.0 ± 17.0 min after administration of the reversal agent. No significant differences in physiologic parameters or anesthetic time variables were noted between healthy and unhealthy individuals. Mean heart rate was 72.0 ± 17.6 beats/min (n = 83) and mean oxygen saturation was 96.5% ± 4.2 (n = 62). Mean respiratory rate was 27 ± 9 breaths/min (n = 84) and mean body temperature 36.6°C ± 1.2 (n = 61). The current protocol has several advantages for field use in this species given its quick induction, few observed side effects, and ability to reverse so that the animal can return more quickly to its social group.


Subject(s)
Anesthesia/veterinary , Anesthetics, Combined/administration & dosage , Dexmedetomidine/administration & dosage , Gorilla gorilla/physiology , Ketamine/administration & dosage , Medetomidine/administration & dosage , Animals , Animals, Wild/physiology , Animals, Zoo/physiology , Female , Male
12.
J Hum Evol ; 137: 102691, 2019 12.
Article in English | MEDLINE | ID: mdl-31704354

ABSTRACT

Deeper or more 'severe' linear enamel hypoplasia (LEH) defects are hypothesized to reflect more severe stress during development, but it is not yet clear how depth is influenced by intrinsic enamel growth patterns. Recent work documented inter- and intraspecific differences in LEH defect depth in extant great apes, with mountain gorillas having shallower defects than other taxa, and females having deeper defects than males. Here, we assess the correspondence of inter- and intraspecific defect depth and intrinsic aspects of enamel growth: enamel extension rates, outer enamel striae of Retzius angles, and linear enamel thickness. Thin sections of great ape canines (n = 40) from Gorilla beringei beringei, Gorilla gorilla gorilla, Pan troglodytes, and Pongo spp. were analyzed. Enamel extension rates were calculated within deciles of enamel-dentine junction length. Linear enamel thickness and the angle of intersection between striae of Retzius and the outer enamel surface were measured in the imbricational enamel. Mountain gorillas have faster enamel extension rates and shallower striae angles than the other taxa examined. Mountain gorillas have thinner imbricational enamel than western lowland gorillas and orangutans, but not chimpanzees. In the combined-taxon sample, females exhibit larger striae angles and thicker imbricational enamel than males. Enamel extension rates are highly negatively correlated with striae angles and LEH defect depth. Enamel growth variation corresponds with documented inter- and intraspecific differences in LEH defect depth in great ape canines. Mountain gorillas have shallower striae angles and faster extension rates than other taxa, which might explain their shallow LEH defect morphology and the underestimation of their LEH prevalence in previous studies. These results suggest that stressors of similar magnitude and timing might produce defects of different depths in one species or sex vs. another, which has implications for interpretations of stress histories in hominins with variable enamel growth patterns.


Subject(s)
Ape Diseases/pathology , Cuspid/growth & development , Dental Enamel Hypoplasia/veterinary , Hominidae/growth & development , Animals , Cuspid/abnormalities , Dental Enamel Hypoplasia/pathology , Female , Hominidae/abnormalities , Male
13.
Article in English | MEDLINE | ID: mdl-31085516

ABSTRACT

Mutations in the Plasmodium falciparumk13 (Pfk13) gene are linked to delayed parasite clearance in response to artemisinin-based combination therapies (ACTs) in Southeast Asia. To explore the evolutionary rate and constraints acting on this gene, k13 orthologs from species sharing a recent common ancestor with P. falciparum and Plasmodium vivax were analyzed. These comparative studies were followed by genetic polymorphism analyses within P. falciparum using 982 complete Pfk13 sequences from public databases and new data obtained by next-generation sequencing from African and Haitian isolates. Although k13 orthologs evolve at heterogeneous rates, the gene was conserved across the genus, with only synonymous substitutions being found at residues where mutations linked to the delayed parasite clearance phenotype have been reported. This suggests that those residues were under constraint from undergoing nonsynonymous changes during evolution of the genus. No fixed nonsynonymous differences were found between Pfk13 and its orthologs in closely related species found in African apes. This indicates that all nonsynonymous substitutions currently found in Pfk13 are younger than the time of divergence between P. falciparum and its closely related species. At the population level, no mutations linked to delayed parasite clearance were found in our samples from Africa and Haiti. However, there is a high number of single Pfk13 mutations segregating in P. falciparum populations, and two predominant alleles are distributed worldwide. This pattern is discussed in terms of how changes in the efficacy of natural selection, affected by population expansion, may have allowed for the emergence of mutations tolerant to ACTs.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Drug Resistance/genetics , Phylogeny , Plasmodium vivax/drug effects , Plasmodium vivax/genetics , Polymorphism, Genetic/genetics
14.
J Wildl Dis ; 55(2): 298-303, 2019 04.
Article in English | MEDLINE | ID: mdl-30284944

ABSTRACT

Mountain gorillas ( Gorilla beringei beringei) are one of the most critically endangered great apes in the world. The most common cause of mountain gorilla morbidity and mortality is trauma (e.g., injury from conspecifics or snare entrapment). We conducted a retrospective case-control study of free-ranging, human-habituated mountain gorillas to evaluate factors associated with snare entrapment and the results of clinical intervention. Data were collected from clinical records on all clinical intervention cases ( n=132) in Volcanoes National Park, Rwanda, conducted between 1995-2015. Wildlife veterinarians treated 37 gorillas entrapped in snares and 95 gorillas for other clinical conditions (including trauma and respiratory illness). Multivariate statistical analyses revealed that young gorillas (<8 yr old) were more likely than older gorillas to become snared; that comorbidities delayed times to intervention (≥3 d); and that severity of wounds at the time of intervention were associated with increased risk of lasting impairment (including loss of limb or limb function, or death) within 1 mo after intervention. Our results may influence decisions for gorilla health monitoring and treatment to most effectively conserve this critically endangered species.


Subject(s)
Ape Diseases/pathology , Gorilla gorilla/injuries , Wounds and Injuries/veterinary , Aging , Animals , Ape Diseases/epidemiology , Case-Control Studies , Endangered Species , Female , Male , Parks, Recreational , Retrospective Studies , Rwanda/epidemiology
15.
Am J Phys Anthropol ; 167(4): 930-935, 2018 12.
Article in English | MEDLINE | ID: mdl-30368801

ABSTRACT

OBJECTIVES: Ecological factors, but also tooth-to-tooth contact over time, have a dramatic effect on tooth wear in primates. The aim of this study is to test whether incisor tooth wear changes predictably with age and can thus be used as an age estimation method in a wild population of mountain gorillas (Gorilla beringei beringei) from Volcanoes National Park, Rwanda. MATERIALS AND METHODS: In mountain gorillas of confidently known chronological age (N = 24), we measured the crown height of all permanent maxillary and mandibular incisors (I1 , I1 , I2 , I2 ) as a proxy for incisal macrowear. Linear and quadratic regressions for each incisor were used to test whether age can be predicted by crown height. Using these models, we then predicted age at death of two individual mountain gorillas of probable identifications, based on their incisor crown height. RESULTS: Age decreased significantly with incisor height for all teeth, but the upper first incisors (I1 ) provided the best results, with the lowest Akaike's Information Criterion corrected for small sample size (AICc) and lowest Standard Error of the Estimate (SEE). When the best age equations for each sex were applied to gorillas with probable identifications, the predicted ages differed 1.58 and 3.33 years from the probable ages of these individuals. CONCLUSIONS: Our findings corroborate that incisor crown height, a proxy for incisal wear, varies predictably with age. This relationship can be used to estimate age at death of unknown gorillas in the skeletal collection, and in some cases, to corroborate the identity of individual gorillas recovered from the forest postmortem at an advanced state of decomposition. Such identifications help fill gaps in the demographic database and support research that requires individual-level data.


Subject(s)
Age Determination by Teeth , Gorilla gorilla/anatomy & histology , Incisor , Tooth Wear/pathology , Age Determination by Teeth/methods , Age Determination by Teeth/veterinary , Aging/physiology , Animals , Anthropology, Physical , Female , Incisor/anatomy & histology , Incisor/pathology , Male , Regression Analysis , Rwanda , Tooth Crown/anatomy & histology
16.
J Infect Dis ; 218(suppl_5): S277-S286, 2018 11 22.
Article in English | MEDLINE | ID: mdl-29924324

ABSTRACT

Background: Human and filovirus host interactions remain poorly understood in areas where Ebola hemorrhagic fever outbreaks are likely to occur. In the Bwindi region of Uganda, a hot spot of mammalian biodiversity in Africa, human livelihoods are intimately connected with wildlife, creating potential for exposure to filoviruses. Methods: We tested samples from 331 febrile patients presenting to healthcare facilities near Bwindi Impenetrable Forest, Uganda, by polymerase chain reaction (PCR) analysis and Western blot, using recombinant glycoprotein antigens for Ebola virus (EBOV), Sudan virus (SUDV), Bundibugyo virus (BDBV), and Marburg virus. Behavioral data on contact with wildlife were collected to examine risk factors for filovirus seropositivity. Results: All patients were negative for active filovirus infection, by PCR analysis. However, patients were seroreactive to SUDV (4.7%), EBOV (5.3%), and BDBV (8.9%), indicating previous exposure. Touching duikers was the most significant risk factor associated with EBOV seropositivity, while hunting primates and touching and/or eating cane rats were significant risk factors for SUDV seropositivity. Conclusions: People in southwestern Uganda have suspected previous exposure to filoviruses, particularly those with a history of wildlife contact. Circulation of filoviruses in wild animals and subsequent spillover into humans could be more common than previously reported.


Subject(s)
Animals, Wild/virology , Filoviridae Infections/genetics , Filoviridae Infections/virology , Filoviridae/pathogenicity , Adolescent , Adult , Aged , Animals , Animals, Wild/immunology , Antigens, Viral/immunology , Child , Child, Preschool , Female , Filoviridae/immunology , Filoviridae Infections/immunology , Glycoproteins/immunology , Humans , Infant , Infant, Newborn , Male , Middle Aged , Uganda , Young Adult
17.
Am J Phys Anthropol ; 166(2): 337-352, 2018 06.
Article in English | MEDLINE | ID: mdl-29460951

ABSTRACT

OBJECTIVE: Linear enamel hypoplasia (LEH) is a condition marked by localized reductions in enamel thickness, resulting from growth disruptions during dental development. We use quantitative criteria to characterize the depth of LEH defects and "normal" perikymata in great apes. We test the hypothesis that mountain gorillas have shallow defects compared to other taxa, which may have led to their underestimation in previous studies. MATERIALS AND METHODS: Previous attempts to characterize LEH morphology quantitatively have been limited in sample size and scope. We generated digital elevation models using optical profilometry (Sensofar PLu Neox) and extracted 2D coordinates using ImageJ to quantify depths in canines from three great ape genera (N = 75 perikymata; 255 defects). RESULTS: All defect depths fall outside the distribution of perikymata depths. Mountain gorilla defects are significantly shallower than those of other great ape taxa examined, including western lowland gorillas. Females have significantly deeper defects than males in all taxa. The deepest defect belongs to a wild-captured zoo gorilla. Virunga mountain gorilla specimens collected by Dian Fossey exhibit deeper defects than those collected recently. DISCUSSION: Shallow defect morphology in mountain gorillas may have led to an underestimation of LEH prevalence in past studies. Defect depth is used as a proxy for insult severity, but depth might be influenced by inter- and intra-specific variation in enamel growth. Future studies should test whether severe insults are associated with deeper defects, as might be the case with Haloko, a wild-captured gorilla. Ongoing histologic studies incorporating associated behavioral records will test possible factors that underlie differences in defect morphology.


Subject(s)
Dental Enamel Hypoplasia , Dental Enamel , Gorilla gorilla/anatomy & histology , Odontometry/methods , Animals , Anthropology, Physical , Dental Enamel/diagnostic imaging , Dental Enamel/growth & development , Dental Enamel/pathology , Dental Enamel Hypoplasia/diagnostic imaging , Dental Enamel Hypoplasia/pathology , Female , Male
18.
Mol Biol Evol ; 35(2): 383-403, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29126122

ABSTRACT

Haemosporidians are a diverse group of vector-borne parasitic protozoa that includes the agents of human malaria; however, most of the described species are found in birds and reptiles. Although our understanding of these parasites' diversity has expanded by analyses of their mitochondrial genes, there is limited information on these genes' evolutionary rates. Here, 114 mitochondrial genomes (mtDNA) were studied from species belonging to four genera: Leucocytozoon, Haemoproteus, Hepatocystis, and Plasmodium. Contrary to previous assertions, the mtDNA is phylogenetically informative. The inferred phylogeny showed that, like the genus Plasmodium, the Leucocytozoon and Haemoproteus genera are not monophyletic groups. Although sensitive to the assumptions of the molecular dating method used, the estimated times indicate that the diversification of the avian haemosporidian subgenera/genera took place after the Cretaceous-Paleogene boundary following the radiation of modern birds. Furthermore, parasite clade differences in mtDNA substitution rates and strength of negative selection were detected. These differences may affect the biological interpretation of mtDNA gene lineages used as a proxy to species in ecological and parasitological investigations. Given that the mitochondria are critically important in the parasite life cycle stages that take place in the vector and that the transmission of parasites belonging to particular clades has been linked to specific insect families/subfamilies, this study suggests that differences in vectors have affected the mode of evolution of haemosporidian mtDNA genes. The observed patterns also suggest that the radiation of haemosporidian parasites may be the result of community-level evolutionary processes between their vertebrate and invertebrate hosts.


Subject(s)
Biological Evolution , Genome, Mitochondrial , Genome, Protozoan , Haemosporida/genetics , Selection, Genetic
19.
J Hum Evol ; 115: 36-46, 2018 02.
Article in English | MEDLINE | ID: mdl-28802725

ABSTRACT

While there are a number of methods available for estimation of body mass in adult nonhuman primates, very few are available for juveniles, despite the potential utility of such estimations in both analyses of fossils and in museum collection based research. Furthermore, because of possible scaling differences, adult based body mass estimation equations may not be appropriate for non-adults. In this study, we present new body mass estimation equations for both adult and immature nonhuman hominoids based on joint and metaphyseal dimensions. Articular breadths of the proximal and distal femur, distal humerus and tibial plateau, and metaphyseal breadths of the distal femur and humerus were collected on a reference sample of 159 wild Pan, Gorilla, Pongo, Hylobates, and Symphalangus specimens of known body mass from museum and research collections. Scaling of dimensions with body weight was assessed in both the adult and the ontogenetic sample at several taxonomic levels using reduced major axis regression, followed by regression of each dimension against body mass to generate body mass estimation equations. Joint dimensions were found to be good predictors of body mass in both adult and immature hominoids, with percent prediction errors of 10-20%. However, subtle scaling differences between taxa impacted body mass estimation, suggesting that phylogeny and locomotor effects should be considered when selecting reference samples. Unlike patterns of joint growth in humans, there was little conclusive evidence for consistently larger joints relative to body mass in the non-adult sample. Metaphyseal breadths were strong predictors of body mass and, with some exceptions, gave more precise body mass estimates for non-adults than epiphyseal breadths.


Subject(s)
Body Weight , Hominidae/physiology , Hylobatidae/physiology , Locomotion , Age Factors , Animals , Female , Femur/anatomy & histology , Hominidae/anatomy & histology , Humerus/anatomy & histology , Hylobatidae/anatomy & histology , Male , Tibia/anatomy & histology
20.
Sci Rep ; 7(1): 5352, 2017 07 13.
Article in English | MEDLINE | ID: mdl-28706209

ABSTRACT

Epstein-Barr virus (EBV) infects greater than 90% of humans, is recognized as a significant comorbidity with HIV/AIDS, and is an etiologic agent for some human cancers. The critically endangered mountain gorilla population was suspected of infection with an EBV-like virus based on serology and infant histopathology similar to pulmonary reactive lymphoid hyperplasia (PRLH), a condition associated with EBV in HIV-infected children. To further examine the presence of EBV or an EBV-like virus in mountain gorillas, we conducted the first population-wide survey of oral samples for an EBV-like virus in a nonhuman great ape. We discovered that mountain gorillas are widely infected (n = 143/332) with a specific strain of lymphocryptovirus 1 (GbbLCV-1). Fifty-two percent of infant mountain gorillas were orally shedding GbbLCV-1, suggesting primary infection during this stage of life, similar to what is seen in humans in less developed countries. We then identified GbbLCV-1 in post-mortem infant lung tissues demonstrating histopathological lesions consistent with PRLH, suggesting primary infection with GbbLCV-1 is associated with PRLH in infants. Together, our findings demonstrate that mountain gorilla's infection with GbbLCV-1 could provide valuable information for human disease in a natural great ape setting and have potential conservation implications in this critically endangered species.


Subject(s)
Ape Diseases/epidemiology , Ape Diseases/virology , Herpesviridae Infections/veterinary , Lymphocryptovirus/isolation & purification , Tumor Virus Infections/veterinary , Animals , Animals, Newborn , Gorilla gorilla , Herpesviridae Infections/epidemiology , Herpesviridae Infections/virology , Histocytochemistry , Lung/pathology , Lung/virology , Mouth/virology , Tumor Virus Infections/epidemiology , Tumor Virus Infections/virology , Virus Shedding
SELECTION OF CITATIONS
SEARCH DETAIL