Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
bioRxiv ; 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-36993480

ABSTRACT

The versatility of somatosensation arises from heterogeneous dorsal root ganglion (DRG) neurons. However, soma transcriptomes of individual human DRG (hDRG) neurons-critical in-formation to decipher their functions-are lacking due to technical difficulties. Here, we developed a novel approach to isolate individual hDRG neuron somas for deep RNA sequencing (RNA-seq). On average, >9,000 unique genes per neuron were detected, and 16 neuronal types were identified. Cross-species analyses revealed remarkable divergence among pain-sensing neurons and the existence of human-specific nociceptor types. Our deep RNA-seq dataset was especially powerful for providing insight into the molecular mechanisms underlying human somatosensation and identifying high potential novel drug targets. Our dataset also guided the selection of molecular markers to visualize different types of human afferents and the discovery of novel functional properties using single-cell in vivo electrophysiological recordings. In summary, by employing a novel soma sequencing method, we generated an unprecedented hDRG neuron atlas, providing new insights into human somatosensation, establishing a critical foundation for translational work, and clarifying human species-species properties.

2.
Elife ; 112022 12 08.
Article in English | MEDLINE | ID: mdl-36476338

ABSTRACT

Mice are the most commonly used model animals for itch research and for development of anti-itch drugs. Most laboratories manually quantify mouse scratching behavior to assess itch intensity. This process is labor-intensive and limits large-scale genetic or drug screenings. In this study, we developed a new system, Scratch-AID (Automatic Itch Detection), which could automatically identify and quantify mouse scratching behavior with high accuracy. Our system included a custom-designed videotaping box to ensure high-quality and replicable mouse behavior recording and a convolutional recurrent neural network trained with frame-labeled mouse scratching behavior videos, induced by nape injection of chloroquine. The best trained network achieved 97.6% recall and 96.9% precision on previously unseen test videos. Remarkably, Scratch-AID could reliably identify scratching behavior in other major mouse itch models, including the acute cheek model, the histaminergic model, and a chronic itch model. Moreover, our system detected significant differences in scratching behavior between control and mice treated with an anti-itch drug. Taken together, we have established a novel deep learning-based system that could replace manual quantification for mouse scratching behavior in different itch models and for drug screening.


Subject(s)
Deep Learning , Mice , Animals , Pruritus/chemically induced , Behavior, Animal , Injections , Chloroquine/pharmacology , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...