Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Phys J C Part Fields ; 81(9): 823, 2021.
Article in English | MEDLINE | ID: mdl-34720726

ABSTRACT

The DEAP-3600 detector searches for the scintillation signal from dark matter particles scattering on a 3.3 tonne liquid argon target. The largest background comes from 39 Ar beta decays and is suppressed using pulse-shape discrimination (PSD). We use two types of PSD estimator: the prompt-fraction, which considers the fraction of the scintillation signal in a narrow and a wide time window around the event peak, and the log-likelihood-ratio, which compares the observed photon arrival times to a signal and a background model. We furthermore use two algorithms to determine the number of photons detected at a given time: (1) simply dividing the charge of each PMT pulse by the mean single-photoelectron charge, and (2) a likelihood analysis that considers the probability to detect a certain number of photons at a given time, based on a model for the scintillation pulse shape and for afterpulsing in the light detectors. The prompt-fraction performs approximately as well as the log-likelihood-ratio PSD algorithm if the photon detection times are not biased by detector effects. We explain this result using a model for the information carried by scintillation photons as a function of the time when they are detected.

2.
Phys Rev Lett ; 121(7): 071801, 2018 Aug 17.
Article in English | MEDLINE | ID: mdl-30169081

ABSTRACT

This Letter reports the first results of a direct dark matter search with the DEAP-3600 single-phase liquid argon (LAr) detector. The experiment was performed 2 km underground at SNOLAB (Sudbury, Canada) utilizing a large target mass, with the LAr target contained in a spherical acrylic vessel of 3600 kg capacity. The LAr is viewed by an array of PMTs, which would register scintillation light produced by rare nuclear recoil signals induced by dark matter particle scattering. An analysis of 4.44 live days (fiducial exposure of 9.87 ton day) of data taken during the initial filling phase demonstrates the best electronic recoil rejection using pulse-shape discrimination in argon, with leakage <1.2×10^{-7} (90% C.L.) between 15 and 31 keV_{ee}. No candidate signal events are observed, which results in the leading limit on weakly interacting massive particle (WIMP)-nucleon spin-independent cross section on argon, <1.2×10^{-44} cm^{2} for a 100 GeV/c^{2} WIMP mass (90% C.L.).

SELECTION OF CITATIONS
SEARCH DETAIL
...