Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 15(3)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36986768

ABSTRACT

In the context of essential drug shortages, this article reports a proof of concept for the hospital preparation of a 2% propofol injectable nanoemulsion. Two processes for propofol were assessed: mixing propofol with the commercial Intralipid® 20% emulsion and a "de novo" process performed using separate raw materials (i.e., oil, water, and surfactant) and optimized for droplet size reduction with a high-pressure homogenizer. A propofol HPLC-UV stability-indicating method was developed for process validation and short-term stability. In addition, free propofol in the aqueous phase was quantified by dialysis. To envision routine production, sterility and endotoxin tests were validated. Only the "de novo" process using high-pressure homogenization gave satisfactory physical results similar to commercialized Diprivan® 2%. Both terminal heat sterilization processes (121 °C, 15 min and 0.22 µm filtration) were validated, but an additional pH adjustment was required prior to heat sterilization. The propofol nanoemulsion was monodisperse with a 160 nm mean droplet size, and no droplets were larger than 5µm. We confirmed that free propofol in the aqueous phase of the emulsion was similar to Diprivan 2%, and the chemical stability of propofol was validated. In conclusion, the proof of concept for the in-house 2% propofol nanoemulsion preparation was successfully demonstrated, opening the field for the possible production of the nanoemulsion in hospital pharmacies.

2.
Bioconjug Chem ; 34(3): 572-580, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36853958

ABSTRACT

The multimerization of active compounds has emerged as a successful approach, mainly to address the multivalency of numerous biological targets. Regarding the pharmaceutical prospect, carrying several active ingredient units on the same synthetic scaffold was a practical approach to enhance drug delivery or biological activity with a lower global concentration. Various examples have highlighted better in vivo stability and therapeutic efficiency through sustained action over monomeric molecules. The synthesis strategy aims to covalently connect biologically active monomers to a central core using simple and efficient reaction steps. Despite extensive studies reporting carbohydrate or even peptide multimerization developed for therapeutic activities, very few are concerned with nucleic acid derivatives. In the context of our efforts to build non-viral nucleolipid (NL)-based nanocarriers to restore lysosomal acidification defects, we report here a straightforward synthesis of tetrameric NLs, designed as prodrugs that are able to release no more than one but four biocompatible succinic acid units. The use of oil-in-water nanoemulsion-type vehicles allowed the development of lipid nanosystems crossing the membranes of human neuroblastoma cells. Biological evaluations have proved the effective release of the acid within the lysosome of a genetic and cellular model of Parkinson's disease through the recovery of an optimal lysosomal pH associated with a remarkably fourfold lower concentration of active ingredients than with the corresponding monomers. Overall, these results suggest the feasibility, the therapeutic opportunity, and the better tolerance of multimeric compounds compared to only monomer molecules.


Subject(s)
Prodrugs , Succinic Acid , Humans , Drug Delivery Systems , Lysosomes , Hydrogen-Ion Concentration
3.
Aging Cell ; 21(4): e13584, 2022 04.
Article in English | MEDLINE | ID: mdl-35318803

ABSTRACT

Parkinson's disease (PD) is an age-related neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra, associated with the accumulation of misfolded α-synuclein and lysosomal impairment, two events deemed interconnected. Protein aggregation is linked to defects in degradation systems such as the autophagy-lysosomal pathway, while lysosomal dysfunction is partly related to compromised acidification. We have recently proven that acidic nanoparticles (aNPs) can re-acidify lysosomes and ameliorate neurotoxin-mediated dopaminergic neurodegeneration in mice. However, no lysosome-targeted approach has yet been tested in synucleinopathy models in vivo. Here, we show that aNPs increase α-synuclein degradation through enhancing lysosomal activity in vitro. We further demonstrate in vivo that aNPs protect nigral dopaminergic neurons from cell death, ameliorate α-synuclein pathology, and restore lysosomal function in mice injected with PD patient-derived Lewy body extracts carrying toxic α-synuclein aggregates. Our results support lysosomal re-acidification as a disease-modifying strategy for the treatment of PD and other age-related proteinopathies.


Subject(s)
Nanoparticles , Parkinson Disease , Animals , Humans , Lysosomes/metabolism , Mice , Parkinson Disease/metabolism , Substantia Nigra/metabolism , alpha-Synuclein/metabolism
4.
Front Chem ; 9: 736554, 2021.
Article in English | MEDLINE | ID: mdl-34490217

ABSTRACT

Increasing evidence suggests that lysosomal dysfunction has a pathogenic role in neurodegenerative diseases. In particular, an increase in lysosomal pH has been reported in different cellular models of Parkinson's disease. Thus, targeting lysosomes has emerged as a promising approach. More specifically, regulating its pH could play a central role against the neurodegeneration process. To date, only a few agents specifically targeting lysosomal pH are reported in the literature, partly due to the challenge of crossing the Blood-Brain-Barrier (BBB), preventing drug penetration into the central nervous system (CNS). To develop chronic treatments for neurodegenerative diseases, crossing the BBB is crucial. We report herein the conception and synthesis of an innovative DNA derivative-based nanocarrier. Nucleolipids, carrying a biocompatible organic acid as an active ingredient, were designed and synthesized as prodrugs. They were successfully incorporated into an oil-in-water nanoemulsion vehicle to cross biological membranes and then release effectively biocompatible acidic components to restore the functional lysosomal pH of neuronal cells. Biological assays on a genetic cell model of Parkinson's disease highlighted the non-toxicity of such nucleolipids after cellular uptake and their ability (at c = 40 µM) to fully restore lysosomal acidity.

5.
Int J Mol Sci ; 22(10)2021 May 14.
Article in English | MEDLINE | ID: mdl-34068875

ABSTRACT

Atherosclerosis is at the onset of the cardiovascular diseases that are among the leading causes of death worldwide. Currently, high-risk plaques, also called vulnerable atheromatous plaques, remain often undiagnosed until the occurrence of severe complications, such as stroke or myocardial infarction. Molecular imaging agents that target high-risk atheromatous lesions could greatly improve the diagnosis of atherosclerosis by identifying sites of high disease activity. Moreover, a "theranostic approach" that combines molecular imaging agents (for diagnosis) and therapeutic molecules would be of great value for the local management of atheromatous plaques. The aim of this study was to develop and characterize an innovative theranostic tool for atherosclerosis. We engineered oil-in-water nano-emulsions (NEs) loaded with superparamagnetic iron oxide (SPIO) nanoparticles for magnetic resonance imaging (MRI) purposes. Dynamic MRI showed that NE-SPIO nanoparticles decorated with a polyethylene glycol (PEG) layer reduced their liver uptake and extended their half-life. Next, the NE-SPIO-PEG formulation was functionalized with a fully human scFv-Fc antibody (P3) recognizing galectin 3, an atherosclerosis biomarker. The P3-functionalized formulation targeted atheromatous plaques, as demonstrated in an immunohistochemistry analyses of mouse aorta and human artery sections and in an Apoe-/- mouse model of atherosclerosis. Moreover, the formulation was loaded with SPIO nanoparticles and/or alpha-tocopherol to be used as a theranostic tool for atherosclerosis imaging (SPIO) and for delivery of drugs that reduce oxidation (here, alpha-tocopherol) in atheromatous plaques. This study paves the way to non-invasive targeted imaging of atherosclerosis and synergistic therapeutic applications.


Subject(s)
Atherosclerosis/pathology , Emulsions , Magnetite Nanoparticles/administration & dosage , Molecular Imaging/methods , Single-Chain Antibodies/immunology , Theranostic Nanomedicine/methods , Animals , Atherosclerosis/immunology , Contrast Media , Female , Humans , Magnetic Resonance Imaging , Magnetite Nanoparticles/chemistry , Mice , Mice, Inbred C57BL , Mice, Knockout, ApoE , Polyethylene Glycols
6.
Am J Health Syst Pharm ; 78(9): 806-812, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33630992

ABSTRACT

PURPOSE: To investigate the long-term chemical and physical stability of 5-mg/mL acyclovir solution in polypropylene bags stored at 5°C ± 3°C for 2 months in order to determine the feasibility of batch production by a centralized intravenous additive service. METHODS: Eight empty 100-mL polypropylene bags (bags A) and 8 empty 250-mL bags (bags B) were respectively filled with 60 mL and 200 mL of 5-mg/mL acyclovir and 0.9% sodium chloride injection (NaCl) under aseptic conditions through a semiautomated manufacturing process and vacuum packed before storage at 5°C ± 3°C. Four bags A and 4 bags B were tested for chemical stability via a stability-indicating high-performance liquid chromatography (HPLC) method immediately after preparation (time 0) and after 7, 14, 21, 28, 35, 42, and 63 days. Samples for microbiological assay were collected on days 0 and 63 from 4 bags A and 4 bags B immediately after breaking the vacuum. Osmolality, pH, and physical stability were assessed by visual examination, Subvisible particle counting was performed on 6 additional bags (3 each of bags A and B). RESULTS: Mean percentage loss of acyclovir relative to the mean experimental concentration at time 0 was below 5% over the 63-day study period.. No significant differences of pH, no change in color and no precipitate were observed during the study. Subvisible particle counts were compliant with European Pharmacopoeia requirements. Acyclovir solutions remained sterile over the 63 days of the study. CONCLUSION: Extemporaneously prepared acyclovir 5 mg/mL solutions in 0.9% NaCl stored in polypropylene bags were chemically and physically stable over 63 days when stored at 5°C ± 3°C.


Subject(s)
Drug Packaging , Polypropylenes , Acyclovir , Chromatography, High Pressure Liquid , Drug Stability , Drug Storage , Hospitals , Humans
7.
ACS Omega ; 5(11): 5815-5823, 2020 Mar 24.
Article in English | MEDLINE | ID: mdl-32226861

ABSTRACT

Neurodegenerative diseases represent some of the greatest challenges for both basic science and clinical medicine. Due to their prevalence and the lack of known biochemical-based treatments, these complex pathologies result in an increasing societal cost. Increasing genetic and neuropathological evidence indicates that lysosomal impairment may be a common factor linking these diseases, demanding the development of therapeutic strategies aimed at restoring the lysosomal function. Here, we propose the design and synthesis of a nucleolipid conjugate as a nonviral chemical nanovector to specifically target neuronal cells and intracellular organelles. Herein, thymidine, appropriately substituted to increase its lipophilicity, was used as a model nucleoside and a fluorophore moiety, covalently bound to the nucleoside, allowed the monitoring of nucleolipid internalization in vitro. To improve nucleolipid protection and cellular uptake, these conjugates were formulated in nanoemulsions. In vitro biological assays demonstrated cell uptake- and internalization-associated colocalization with lysosomal markers. Overall, this nucleolipid-nanoemulsion-based formulation represents a promising drug-delivery tool to target the central nervous system, able to deliver drugs to restore the impaired lysosomal function.

8.
Sci Rep ; 10(1): 2850, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32071330

ABSTRACT

One of the greatest challenges in the field of biofabrication remains the discovery of suitable bioinks that satisfy physicochemical and biological requirements. Despite recent advances in tissue engineering and biofabrication, progress has been limited to the development of technologies using polymer-based materials. Here, we show that a nucleotide lipid-based hydrogel resulting from the self-assembly of nucleotide lipids can be used as a bioink for soft tissue reconstruction using injection or extrusion-based systems. To the best of our knowledge, the use of a low molecular weight hydrogel as an alternative to polymeric bioinks is a novel concept in biofabrication and 3D bioprinting. Rheological studies revealed that nucleotide lipid-based hydrogels exhibit suitable mechanical properties for biofabrication and 3D bioprinting, including i) fast gelation kinetics in a cell culture medium and ii) shear moduli and thixotropy compatible with extruded oral cell survival (human gingival fibroblasts and stem cells from the apical papilla). This polymer-free soft material is a promising candidate for a new bioink design.


Subject(s)
Biocompatible Materials/chemistry , Lipids/chemistry , Nucleotides/chemistry , Printing, Three-Dimensional , Biocompatible Materials/pharmacology , Bioprinting/methods , Cell Survival/drug effects , Fibroblasts/drug effects , Humans , Hydrogels/chemistry , Hydrogels/pharmacology , Lipids/pharmacology , Nucleotides/pharmacology , Rheology , Stem Cells/drug effects , Tissue Engineering
9.
Nanoscale Adv ; 2(4): 1590-1602, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-36132308

ABSTRACT

Tailor-made NIR emitting dyes were designed as multimodal optical probes. These asymmetric amphiphilic compounds show combined intense absorption in the visible region, NIR fluorescence emission, high two-photon absorption in the NIR (with the maximum located around 1000 nm) as well as large Stokes' shift values and second-harmonic generation ability. Thanks to their structure, high loading into nanoemulsions (NEs) could be achieved leading to very high one- and two-photon brightness. These dyes were demonstrated to act as multimodal contrast agents able to generate different optical modalities of interest for bioimaging. Indeed, the uptake and carrier behaviour of the dye-loaded NEs into cancer cells could be monitored by simultaneous two-photon fluorescence and second-harmonic generation optical imaging. Multimodal imaging provided deep insight into the mechanism and kinetics of dye internalisation. Quite interestingly, the nature of the dyes was also found to influence both the kinetics of endocytosis and the internalisation pathways in glioblastoma cancer cells. By modulating the charge distribution within the dyes, the NEs can be tuned to escape lysosomes and enter the mitochondria. Moreover, surface functionalization with PEG macromolecules was realized to yield stealth NIRF-NEs which could be used for in vivo NIRF imaging of subcutaneous tumours in mice.

10.
J Mater Sci Mater Med ; 30(2): 28, 2019 Feb 12.
Article in English | MEDLINE | ID: mdl-30747358

ABSTRACT

Development of a microvasculature into tissue-engineered bone substitutes represents a current challenge. Seeding of endothelial cells in an appropriate environment can give rise to a capillary-like network to enhance prevascularization of bone substitutes. Advances in biofabrication techniques, such as bioprinting, could allow to precisely define a pattern of endothelial cells onto a biomaterial suitable for in vivo applications. The aim of this study was to produce a microvascular network following a defined pattern and preserve it while preparing the surface to print another layer of endothelial cells. We first optimise the bioink cell concentration and laser printing parameters and then develop a method to allow endothelial cells to survive between two collagen layers. Laser-assisted bioprinting (LAB) was used to pattern lines of tdTomato-labeled endothelial cells cocultured with mesenchymal stem cells seeded onto a collagen hydrogel. Formation of capillary-like structures was dependent on a sufficient local density of endothelial cells. Overlay of the pattern with collagen I hydrogel containing vascular endothelial growth factor (VEGF) allowed capillary-like structures formation and preservation of the printed pattern over time. Results indicate that laser-assisted bioprinting is a valuable technique to pre-organize endothelial cells into high cell density pattern in order to create a vascular network with defined architecture in tissue-engineered constructs based on collagen hydrogel.


Subject(s)
Bioprinting , Collagen/chemistry , Endothelial Cells/cytology , Tissue Engineering/methods , Animals , Biocompatible Materials , Cell Line , Coculture Techniques , Human Umbilical Vein Endothelial Cells/cytology , Humans , Hydrogels/chemistry , Infant, Newborn , Lasers , Mice , Molar , Printing, Three-Dimensional , Tissue Scaffolds , Vascular Endothelial Growth Factor A/chemistry
11.
J Oncol Pharm Pract ; 25(8): 1873-1890, 2019 Dec.
Article in English | MEDLINE | ID: mdl-30651029

ABSTRACT

The aim of this study was to develop a specific simulation program for the validation of a cytotoxic compounding robot, KIRO® Oncology, for the preparation of sterile monoclonal antibodies and anti-infectious drugs. The impact of excipient formulations was clearly measured using simulation accuracy tests with worst case excipient (i.e. viscous, foaming) and allowed to correct the robotic settings prior to real production. Corrections brought accuracies within the acceptable range of ±5%. KIRO® Oncology robot has also the capacity of self-cleaning and a simulation combining media fill test, and environmental monitoring was able to validate the aseptic process including simulation of worst case conditions and highlighting the areas not accessible to self-cleaning to be corrected by additional manual cleaning measures. The risk of chemical contamination was simulated by using fluorescent dye of the process with high-risk excipient formulation and overpressure vials. Quality control reliability was simulated by using a model drug, and final concentration was determined by high-performance liquid chromatography-ultraviolet detection. Finally, productivity was simulated using different models of production showing the impact of the type of drug, the number of vials and the poor standardization of the process.


Subject(s)
Anti-Infective Agents/administration & dosage , Antibodies, Monoclonal/administration & dosage , Antineoplastic Agents, Immunological/administration & dosage , Robotics , Drug Compounding/standards , Drug Contamination/prevention & control , Humans , Quality Control , Reproducibility of Results
12.
Drug Discov Today ; 24(1): 163-178, 2019 01.
Article in English | MEDLINE | ID: mdl-30391204

ABSTRACT

Recent developments in bioprinting have enabled an optimized formulation of bioinks by incorporating pharmaceuticals into cell-containing gel matrices. The proof-of-printability of a variety of forms has been provided, such as particles and fibers in the nanometric or micrometric range like dendrimers or micelles, although this is still lacking for some (liposomes for example). Resulting composite bioinks have the advantage of (i) improving cell growth and differentiation, (ii) delivering active molecules or (iii) improving mechanical properties of bioinks, printed scaffolds or the printing process. Improvement of these properties brings bioprinting one step forward toward clinical applications. Applications are reviewed for each field of improvements.


Subject(s)
Bioprinting , Animals , Dosage Forms , Drug Compounding , Humans , Ink , Nanostructures
13.
Bioconjug Chem ; 29(12): 4083-4089, 2018 12 19.
Article in English | MEDLINE | ID: mdl-30424597

ABSTRACT

Most neurodegenerative disorders are characterized by deposits of misfolded proteins and neuronal degeneration in specific brain regions. Growing evidence indicates that lysosomal impairment plays a primary pathogenic role in these diseases, in particular, the occurrence of increased lysosomal pH. Thus, therapeutic development aiming at restoring lysosomal function represents a novel, precise, and promising strategy for the treatment of these pathologies. Herein we demonstrate that acidic oil-in-water nanoemulsions loaded with poly(dl-lactide- co-glycolide) (PLGA) are able to rescue impaired lysosomal pH in genetic cellular models of Parkinson's disease. For in vivo assays, nanoemulsions were labeled with an original synthetic hydrophobic far red-emitting dye to allow fluorescence monitoring. Following stereotaxic injection in the mouse brain, widespread diffusion of the nanocarrier was observed, up to 500 µm from the injection site, as well as internalization into the lysosomal compartment in brain cells. Finally, promising preliminary assays of systemic administration demonstrate that a fraction of the formulation crosses the blood brain barrier, penetrates the brain parenchyma, is internalized by cells, and colocalizes with lysosomal markers. Overall, these results suggest the feasibility and the therapeutic potential of this new nanoformulation as an effective drug delivery tool to the brain, with the potential to rescue pathological lysosomal deficits.


Subject(s)
Hydrogen-Ion Concentration , Lysosomes/metabolism , Nanoparticles , Neurodegenerative Diseases/drug therapy , Polylactic Acid-Polyglycolic Acid Copolymer/therapeutic use , Animals , Blood-Brain Barrier , Cell Line, Tumor , Drug Carriers , Emulsions , Endocytosis , Humans , Mice , Neurodegenerative Diseases/metabolism , Polylactic Acid-Polyglycolic Acid Copolymer/administration & dosage , Polylactic Acid-Polyglycolic Acid Copolymer/pharmacokinetics
14.
Data Brief ; 15: 824-827, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29159220

ABSTRACT

This article present data related to the publication entitled "Iron oxide core oil-in-water nanoemulsion as tracer for atherosclerosis MPI and MRI imaging" (Prévot et al., 2017) [1]. Herein we describe the engineering in the baculovirus-insect cell system and purification processes of the human scFv-Fc TEG4-2C antibody, specific of platelets within the atheroma plaque. For molecular targeting purpose, atheroma specific antibody was conjugated to nanoemulsions (NEs) using a heterobifunctional linker (DSPE-PEG-maleimide). Atheroma labelling was assayed by immunochemistry on arterial sections from rabbits.

15.
Data Brief ; 15: 876-881, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29159224

ABSTRACT

The data presented in this article are related to the publication entitled "Iron oxide core oil-in-water nanoemulsion as tracer for atherosclerosis MPI and MRI imaging" (Prévot et al., 2017) [1]. Herein we describe the synthesis and the characteristics of the Superparamagnetic Iron Oxide Nanoparticles (SPION) loaded inside nanoemulsions (NEs). Focus was set on obtaining SPION with narrow size distribution and close to superparamagnetic limit (20 nm) in order to reach a reasonable magnetic signal. Nanoparticles (NPs) of three different sizes were obtained (7, 11 and 18 nm) and characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), diffuse reflectance infrared Fourier transform (DRIFT) and thermogravimetric analysis (TGA). SPION were coated with oleic acid (OA) in order to load them inside the oily core of NEs droplets. SPION loaded NEs were magnetically sorted using MACS® MS Column (Miltenyi Biotec) and iron quantification was performed by UV-spectrometry measurements.

16.
Int J Pharm ; 532(2): 669-676, 2017 Nov 05.
Article in English | MEDLINE | ID: mdl-28899764

ABSTRACT

PURPOSE: For early atherosclerosis imaging, magnetic oil-in-water nanoemulsion (NE) decorated with atheroma specific monoclonal antibody was designed for Magnetic Particle Imaging (MPI) and Magnetic Resonance Imaging (MRI). MPI is an emerging technique based on direct mapping of superparamagnetic nanoparticles which may advantageously complement MRI. METHODS: NE oily droplets were loaded with superparamagnetic iron oxide nanoparticles of 7, 11 and 18nm and biofunctionalized with atheroma specific scFv-Fc TEG4-2C antibody. RESULTS: Inclusion of nanoparticles inside NE did not change the hydrodynamic diameter of the oil droplets, close to 180nm, nor the polydispersity. The droplets were negatively charged (ζ=-30mV). In vitro MPI signal was assessed by Magnetic Particle Spectroscopy (MPS). NE displayed MRI and MPS signals confirming its potential as new contrast agent. NE MPS signal increase with NPs size close to the gold standard (Resovist). In MRI, NE displayed R2* transversal relaxivity of 45.45, 96.04 and 218.81mM-1s-1 for 7, 11 and 18nm respectively. NE selectively bind atheroma plaque both in vitro and ex vivo in animal models of atherosclerosis. CONCLUSION: Magnetic NE showed reasonable MRI/MPS signals and a significant labelling of the atheroma plaque. These preliminary results support that NE platform could selectively image atherosclerosis.


Subject(s)
Atherosclerosis/diagnostic imaging , Contrast Media/administration & dosage , Ferric Compounds/administration & dosage , Plaque, Atherosclerotic/diagnostic imaging , Single-Chain Antibodies/administration & dosage , Animals , Apolipoproteins E/genetics , Atherosclerosis/immunology , Contrast Media/chemistry , Diglycerides/administration & dosage , Diglycerides/chemistry , Emulsions , Female , Ferric Compounds/chemistry , Humans , Magnetic Phenomena , Magnetic Resonance Imaging , Mice, Knockout , Nanostructures/administration & dosage , Nanostructures/chemistry , Plaque, Atherosclerotic/immunology , Rabbits , Single-Chain Antibodies/chemistry , Water/administration & dosage , Water/chemistry
17.
Ther Deliv ; 6(12): 1377-85, 2015.
Article in English | MEDLINE | ID: mdl-26609768

ABSTRACT

Spherulites are onion-like structures composed of phospholipids and excipients. Initially discovered in an academic laboratory, these autoassembled nano-objects have been developed further by the start-up Capsulis (Bordeaux, France), and commercialized for veterinary and dermatological applications. Owing to economical strategies, the development of these objects have not been pursued, however, they are very interesting systems, which should be exploited further. The autoassembly of amphiphiles followed by a shear stress allows the formation of nano- to micrometer range nanoparticles, which could be interesting either for systemic or local delivery. Small molecules to macromolecules have been encapsulated in spherulites in the nanometer range. All have shown promising results. Hence, spherulite-encapsulated oligonucleotides have shown increased cell internalization. DNA was shown to be encapsulated in these neutral nanoparticles. Proof-of-concept of protein encapsulation was obtained leading to immune stimulation. This review summarizes the different ways to obtain spherulites, the results of the various investigations performed to date and indicates the limits and the interests of theses nanocarriers and proposes future prospects.


Subject(s)
Drug Carriers/chemistry , Excipients/chemistry , Nanomedicine , Phospholipids/chemistry , Chemistry, Pharmaceutical , Contrast Media/chemistry , Contrast Media/metabolism , Humans , Nanoparticles/chemistry , Nucleic Acids/chemistry , Nucleic Acids/metabolism
18.
Pharm Res ; 32(9): 2983-94, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25805598

ABSTRACT

PURPOSE: The objective was to develop, characterize and assess the potentiality of W1/O/W2 self-emulsifying multiple nanoemulsions to enhance signal/noise ratio for Magnetic Resonance Imaging (MRI). METHODS: For this purpose, a new formulation, was designed for encapsulation efficiency and stability. Various methods were used to characterize encapsulation efficiency ,in particular calorimetric methods (Differential Scanning Calorimetry (DSC), thermogravimetry analysis) and ultrafiltration. MRI in vitro relaxivities were assessed on loaded DTPA-Gd multiple nanoemulsions. RESULTS: Characterization of the formulation, in particular of encapsulation efficiency was a challenge due to interactions found with ultrafiltration method. Thanks to the specifically developed DSC protocol, we were able to confirm the formation of multiple nanoemulsions, differentiate loaded from unloaded nanoemulsions and measure the encapsulation efficiency which was found to be quite high with a 68% of drug loaded. Relaxivity studies showed that the self-emulsifying W/O/W nanoemulsions were positive contrast agents, exhibiting higher relaxivities than those of the DTPA-Gd solution taken as a reference. CONCLUSION: New self-emulsifying multiple nanoemulsions that were able to load satisfactory amounts of contrasting agent were successfully developed as potential MRI contrasting agents. A specific DSC protocol was needed to be developed to characterize these complex systems as it would be useful to develop these self-formation formulations.


Subject(s)
Chelating Agents/chemistry , Contrast Media/chemistry , Emulsions/chemistry , Gadolinium DTPA/chemistry , Gadolinium/chemistry , Nanoparticles/chemistry , Chemistry, Pharmaceutical/methods , Magnetic Resonance Imaging/methods
19.
Eur J Pharm Biopharm ; 85(3 Pt B): 1088-94, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23523544

ABSTRACT

Objective of this study was to assess the various steps leading to spherulite obtention by means of optical and cryoelectron microscopy. The formulation, resting and hydration steps were optimised. Green-based process and organic-based process were compared. It was found that spherulites could be obtained only when two key steps were followed: a prior resting phase of excipients and the shearing stress of the hydrated excipients. Moreover, the new formulation under study formed spherulites in the 100-200 nm range, which is smaller than previously reported spherulites. Such laboratory scale optimised process led the integration of spherulites in a larger number of prospective studies. Indeed, we finally showed that the encapsulated payload of a hydrophobic compound, such as the anti-angiogenic agent fisetin, was increased to a much higher degree than with a liposomal encapsulation.


Subject(s)
Angiogenesis Inhibitors/chemistry , Cryoelectron Microscopy , Flavonoids/chemistry , Lipids/chemistry , Liposomes/chemistry , Drug Carriers/chemistry , Excipients , Flavonols , Hydrophobic and Hydrophilic Interactions , Lipid Bilayers/chemistry , Microscopy, Electron, Transmission , Optics and Photonics , Particle Size , Shear Strength , Solvents/chemistry
20.
Int J Nanomedicine ; 8: 611-25, 2013.
Article in English | MEDLINE | ID: mdl-23403891

ABSTRACT

Three multiple water-in-oil-in-water (W/O/W) nanoemulsions have been designed for potential inclusion of either lipophilic or hydrophilic drugs using a two-step emulsification process exclusively based on low-energy self-emulsification. The W/O primary emulsion was constituted by a blend of oil (medium chain triglyceride), a mixture (7:3) of two surfactants, and a 10% water phase. The surfactants were a mixture of Polysorbate-85/Labrasol(®), Polysorbate-85/Cremophor(®) EL or glycerol/Polysorbate-85. The final W/O/W nanoemulsions were obtained by the addition of water, with a weight ratio nanoemulsion/water of 1:2. The multiple emulsion stability was found to increase from 24 hours to 2 and 6 months with Labrasol, glycerol, and Cremophor, respectively. Cytotoxicity was found for formulations including Labrasol and Cremophor EL. The concentration of emulsion inhibiting 50% cell viability (IC(50)) was determined using the alamarBlue(®) test, giving after 24 hours of incubation, IC(50) = 10.2 mg/mL for the Labrasol formulation and IC(50) = 11.8 mg/mL for the Cremophor EL formulation. Corresponding calculated IC(50) values for surfactants were 0.51 mg/mL for Labrasol and 0.59 mg/mL for Cremophor EL. In both cases, cytotoxicity was due to an apoptotic mechanism, evidenced by chromatin condensation and P2X7 cell death receptor activation. The formulation including glycerol, investigated between 1 and 100 mg/mL concentration of nanoemulsion, did not affect cell viability. Moreover, neither chromatin condensation nor P2X7 activation was found between the 10 and 30 mg/mL final concentration of the emulsion. This last formulation would therefore be of major interest for further developments.


Subject(s)
Nanoparticles/chemistry , Pharmaceutical Vehicles/chemistry , Analysis of Variance , Apoptosis/drug effects , Cell Line , Cell Survival/drug effects , Drug Stability , Emulsions/administration & dosage , Emulsions/chemistry , Emulsions/toxicity , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelium, Corneal/cytology , Epithelium, Corneal/drug effects , Glycerides , Glycerol/administration & dosage , Glycerol/analogs & derivatives , Glycerol/chemistry , Humans , Nanoparticles/administration & dosage , Nanoparticles/toxicity , Organic Chemicals/administration & dosage , Organic Chemicals/chemistry , Pharmaceutical Vehicles/administration & dosage , Pharmaceutical Vehicles/toxicity , Polysorbates/administration & dosage , Polysorbates/chemistry , Surface-Active Agents/administration & dosage , Surface-Active Agents/chemistry , Surface-Active Agents/toxicity , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...