Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Astrobiology ; 21(8): 997-1016, 2021 08.
Article in English | MEDLINE | ID: mdl-34406809

ABSTRACT

Oxia Planum is a Noachian plain on Mars. It was chosen as the final landing site for in situ studies by ExoMars 2022 rover. The main scientific objectives of the mission are to understand the mineralogy and aqueous evolution of ancient Mars with relevance to habitability. Oxia is covered by vast deposits of Fe,Mg-phyllosilicates, but the exact nature of these deposits is not yet fully understood. We performed a survey of potential terrestrial analog rocks, and here we show combined mineralogical characterization of these rocks with their near-infrared spectral analysis. Samples from two terrestrial sites were studied: (1) vermiculitized chlorite-schists from Otago, New Zealand, which underwent an alteration process without significant oxidation; and (2) basaltic tuffs from Granby, Massachusetts, USA, with Fe-rich clays filling amygdales of supposedly hydrothermal origin. Both analogues are incorporated into the newly built Planetary Terrestrial Analogue Library (PTAL) collection. Oxia bedrock clay-rich deposits are spectrally matched best by a well-crystallized trioctahedral vermiculite/saponite mixture from the basaltic tuff, although the contribution of saponite must be minor. Otago vermiculite is a good analogue to Oxia vermiculite in terms of overall mineralogy and Fe content. However, spectral inconsistencies related to the Al content in the Otago clays indicate that illitization of vermiculite, which results from postalteration oxidation, did not occur at Oxia. This implies limited water/rock interactions and reducing conditions during deposition of sediments now constituting the bedrock at Oxia. Whereas the spectral match does not conclusively imply the mineralogy, trioctahedral vermiculite should be considered a likely mineral component of the bedrock unit at Oxia Planum. Vermiculite has great potential to store organic matter, and the postdeposition geological context of Oxia Planum derived from understanding of environmental conditions in analog sites is promising for organic matter preservation.


Subject(s)
Exobiology , Mars , Aluminum Silicates , Extraterrestrial Environment , Minerals , Water
2.
FEMS Microbiol Ecol ; 96(1)2020 01 01.
Article in English | MEDLINE | ID: mdl-31808799

ABSTRACT

Gold particles contain gold and other toxic, heavy metals, making them 'extreme' geochemical microenvironments. To date, the functional capabilities of bacterial biofilms to deal with these conditions have been inferred from taxonomic analyses. The aims of this study are to evaluate the functional capabilities of bacterial communities on gold particles from six key locations using GeoChip 5.0 and to link functional and taxonomic data. Biofilm communities displayed a wide range of functional capabilities, with up to 53 505 gene probes detected. The capability of bacterial communities to (re)cycle carbon, nitrogen, and sulphur were detected. The cycling of major nutrients is important for maintaining the biofilm community as well as enabling the biogeochemical cycling and mobilisation of heavy and noble metals. Additionally, a multitude of stress- and heavy metal resistance capabilities were also detected, most notably from the α/ß/γ-Proteobacteria and Actinobacteria. The multi-copper-oxidase gene copA, which is directly involved in gold resistance and biomineralisation, was the 15th most intense response and was detected in 246 genera. The Parker Road and Belle Brooke sites were consistently the most different from other sites, which may be a result of local physicochemical conditions (extreme nutrient poverty and sulphur-richness, respectively). In conclusion, biofilms on gold particles display wide-ranging metabolic and stress-related capabilities, which may enable them to survive in these niche environments and drive biotransformation of gold particles.


Subject(s)
Bacteria/metabolism , Biofilms , Gold/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms/growth & development , Biomineralization , Metals, Heavy/metabolism , Microbiota , Nutrients/metabolism , Stress, Physiological
3.
Trends Ecol Evol ; 31(12): 916-926, 2016 12.
Article in English | MEDLINE | ID: mdl-27640783

ABSTRACT

The allopatric model of biological speciation involves fracturing of a pre-existing species distribution and subsequent genetic divergence in isolation. Accumulating global evidence from the Pyrénées, Andes, Himalaya, and the Southern Alps in New Zealand shows the Pleistocene to be associated with the generation of new alpine lineages. By synthesising a large number of genetic analyses and incorporating tectonic, climatic, and population-genetic models, we show here how glaciation is the likely driver of speciation transverse to the Southern Alps. New calibrations for rates of molecular evolution and tectonic uplift both suggest a ∼2 million-year (Ma) time frame. Although glaciation is often seen as destructive for biodiversity, here we demonstrate its creativity, and suggest a general model for speciation on temperate mountain systems worldwide.


Subject(s)
Biodiversity , Evolution, Molecular , Genetic Speciation , Geography , Phylogeny
4.
ISME J ; 1(7): 567-84, 2007 Nov.
Article in English | MEDLINE | ID: mdl-18043665

ABSTRACT

Microorganisms capable of actively solubilizing and precipitating gold appear to play a larger role in the biogeochemical cycling of gold than previously believed. Recent research suggests that bacteria and archaea are involved in every step of the biogeochemical cycle of gold, from the formation of primary mineralization in hydrothermal and deep subsurface systems to its solubilization, dispersion and re-concentration as secondary gold under surface conditions. Enzymatically catalysed precipitation of gold has been observed in thermophilic and hyperthermophilic bacteria and archaea (for example, Thermotoga maritime, Pyrobaculum islandicum), and their activity led to the formation of gold- and silver-bearing sinters in New Zealand's hot spring systems. Sulphate-reducing bacteria (SRB), for example, Desulfovibrio sp., may be involved in the formation of gold-bearing sulphide minerals in deep subsurface environments; over geological timescales this may contribute to the formation of economic deposits. Iron- and sulphur-oxidizing bacteria (for example, Acidothiobacillus ferrooxidans, A. thiooxidans) are known to breakdown gold-hosting sulphide minerals in zones of primary mineralization, and release associated gold in the process. These and other bacteria (for example, actinobacteria) produce thiosulphate, which is known to oxidize gold and form stable, transportable complexes. Other microbial processes, for example, excretion of amino acids and cyanide, may control gold solubilization in auriferous top- and rhizosphere soils. A number of bacteria and archaea are capable of actively catalysing the precipitation of toxic gold(I/III) complexes. Reductive precipitation of these complexes may improve survival rates of bacterial populations that are capable of (1) detoxifying the immediate cell environment by detecting, excreting and reducing gold complexes, possibly using P-type ATPase efflux pumps as well as membrane vesicles (for example, Salmonella enterica, Cupriavidus (Ralstonia) metallidurans, Plectonema boryanum); (2) gaining metabolic energy by utilizing gold-complexing ligands (for example, thiosulphate by A. ferrooxidans) or (3) using gold as metal centre in enzymes (Micrococcus luteus). C. metallidurans containing biofilms were detected on gold grains from two Australian sites, indicating that gold bioaccumulation may lead to gold biomineralization by forming secondary 'bacterioform' gold. Formation of secondary octahedral gold crystals from gold(III) chloride solution, was promoted by a cyanobacterium (P. boryanum) via an amorphous gold(I) sulphide intermediate. 'Bacterioform' gold and secondary gold crystals are common in quartz pebble conglomerates (QPC), where they are often associated with bituminous organic matter possibly derived from cyanobacteria. This may suggest that cyanobacteria have played a role in the formation of the Witwatersrand QPC, the world's largest gold deposit.


Subject(s)
Archaea/metabolism , Bacteria/metabolism , Gold/metabolism , Archaea/ultrastructure , Bacteria/ultrastructure , Gold Compounds/metabolism , Microscopy, Electron, Transmission , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...