Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(8): 9256-9268, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38434901

ABSTRACT

Biopolymer blends have attracted considerable attention in industrial applications due to their notable mechanical properties and biodegradability. This work delves into the innovative combination of butadiene-acrylonitrile (referred to as NBR) with a pectin-based biopolymer (NGP) at a 90:10 mass ratio through a detailed analysis employing mechanical characterization, Fourier transform infrared (FTIR) analysis, thermogravimetric analysis (TGA), and morphology studies using SEM. Additionally, biopolymer's biodegradability under aerobic and anaerobic conditions is tested. The study's findings underscore the superior tensile strength and elongation at break of the NGP/NBR blend in comparison to pure NBR, while also exhibiting a decrease in puncture resistance due to imperfect bonds at the particle-matrix interfaces, necessitating the use of a compatibilizer. In anaerobic conditions, evaluation of biodegradable properties reveals 2% and 12% biodegradability in NBR and NGP/NBR blend, respectively. The degradation properties were also aligned with TGA results highlighting a lower decomposition temperature for NGP. Additionally, this research integrates the application of a conditional value-at-risk (CVaR)-based analysis of the blend's tensile properties to evaluate the uncertainty impact in the experiment. Under risk, a significant enhancement in the tensile performance (by 80%) of the NGP/NBR blend was shown compared to pure NBR. Ultimately, the study shows that adding pectin to the NBR compound amplifies the overall performance of the biopolymer significantly under select criteria.

2.
Materials (Basel) ; 13(16)2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32824047

ABSTRACT

X-ray computed tomography provides qualitative and quantitative structural and compositional information for a broad range of materials. Yet, its contribution to the field of advanced composites such as carbon fiber reinforced polymers is still limited by factors such as low imaging contrast, due to scarce X-ray attenuation features. This article, through a review of the state of the art, followed by an example case study on Micro-computed tomography (CT) analysis of low X-ray absorptive dry and prepreg carbon woven fabric composites, aims to highlight and address some challenges as well as best practices on performing scans that can capture key features of the material. In the case study, utilizing an Xradia Micro-CT-400, important aspects such as obtaining sufficient contrast, an examination of thin samples, sample size/resolution issues, and image-based modeling are discussed. The outcome of an optimized workflow in Micro-CT of composite fabrics can assist in further research efforts such as the generation of surface or volume meshes for the numerical modeling of underlying deformation mechanisms during their manufacturing processes.

3.
Science ; 366(6467): 875-878, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31727835

ABSTRACT

Addition of molecular cross-links to polymers increases mechanical strength and improves corrosion resistance. However, it remains challenging to install cross-links in low-functionality macromolecules in a well-controlled manner. Typically, high-energy processes are required to generate highly reactive radicals in situ, allowing only limited control over the degree and type of cross-link. We rationally designed a bis-diazirine molecule whose decomposition into carbenes under mild and controllable conditions enables the cross-linking of essentially any organic polymer through double C-H activation. The utility of this molecule as a cross-linker was demonstrated for several diverse polymer substrates (including polypropylene, a low-functionality polymer of long-standing challenge to the field) and in applications including adhesion of low-surface-energy materials and the strengthening of polyethylene fabric.

4.
Materials (Basel) ; 10(11)2017 Oct 31.
Article in English | MEDLINE | ID: mdl-29088118

ABSTRACT

The development and application of bio-sourced composites have been gaining wide attention, yet their deterioration due to the growth of ubiquitous microorganisms during storage/manufacturing/in-service phases is still not fully understood for optimum material selection and design purposes. In this study, samples of non-woven flax fibers, hemp fibers, and mats made of co-mingled randomly-oriented flax or hemp fiber (50%) and polypropylene fiber (50%) were subjected to 28 days of exposure to (i) no water-no fungi, (ii) water only and (iii) water along with the Chaetomium globosum fungus. Biocomposite samples were measured for weight loss over time, to observe the rate of fungal growth and the respiration of cellulose components in the fibers. Tensile testing was conducted to measure mechanical properties of the composite samples under different configurations. Scanning electron microscopy was employed to visualize fungal hyphal growth on the natural fibers, as well as to observe the fracture planes and failure modes of the biocomposite samples. Results showed that fungal growth significantly affects the dry mass as well as the tensile elastic modulus of the tested natural fiber mats and composites, and the effect depends on both the type and the length scale of fibers, as well as the exposure condition and time.

SELECTION OF CITATIONS
SEARCH DETAIL
...