Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
1.
Proc Natl Acad Sci U S A ; 121(17): e2320713121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38621119

ABSTRACT

As the SARS-CoV-2 virus continues to spread and mutate, it remains important to focus not only on preventing spread through vaccination but also on treating infection with direct-acting antivirals (DAA). The approval of Paxlovid, a SARS-CoV-2 main protease (Mpro) DAA, has been significant for treatment of patients. A limitation of this DAA, however, is that the antiviral component, nirmatrelvir, is rapidly metabolized and requires inclusion of a CYP450 3A4 metabolic inhibitor, ritonavir, to boost levels of the active drug. Serious drug-drug interactions can occur with Paxlovid for patients who are also taking other medications metabolized by CYP4503A4, particularly transplant or otherwise immunocompromised patients who are most at risk for SARS-CoV-2 infection and the development of severe symptoms. Developing an alternative antiviral with improved pharmacological properties is critical for treatment of these patients. By using a computational and structure-guided approach, we were able to optimize a 100 to 250 µM screening hit to a potent nanomolar inhibitor and lead compound, Mpro61. In this study, we further evaluate Mpro61 as a lead compound, starting with examination of its mode of binding to SARS-CoV-2 Mpro. In vitro pharmacological profiling established a lack of off-target effects, particularly CYP450 3A4 inhibition, as well as potential for synergy with the currently approved alternate antiviral, molnupiravir. Development and subsequent testing of a capsule formulation for oral dosing of Mpro61 in B6-K18-hACE2 mice demonstrated favorable pharmacological properties, efficacy, and synergy with molnupiravir, and complete recovery from subsequent challenge by SARS-CoV-2, establishing Mpro61 as a promising potential preclinical candidate.


Subject(s)
Antiviral Agents , Cytidine/analogs & derivatives , Hepatitis C, Chronic , Hydroxylamines , Lactams , Leucine , Nitriles , Proline , Ritonavir , Humans , Animals , Mice , Antiviral Agents/pharmacology , Clinical Protocols , Drug Combinations
2.
Nature ; 627(8004): 628-635, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38383790

ABSTRACT

Interleukin-10 (IL-10) is a key anti-inflammatory cytokine that can limit immune cell activation and cytokine production in innate immune cell types1. Loss of IL-10 signalling results in life-threatening inflammatory bowel disease in humans and mice-however, the exact mechanism by which IL-10 signalling subdues inflammation remains unclear2-5. Here we find that increased saturated very long chain (VLC) ceramides are critical for the heightened inflammatory gene expression that is a hallmark of IL-10 deficiency. Accordingly, genetic deletion of ceramide synthase 2 (encoded by Cers2), the enzyme responsible for VLC ceramide production, limited the exacerbated inflammatory gene expression programme associated with IL-10 deficiency both in vitro and in vivo. The accumulation of saturated VLC ceramides was regulated by a decrease in metabolic flux through the de novo mono-unsaturated fatty acid synthesis pathway. Restoring mono-unsaturated fatty acid availability to cells deficient in IL-10 signalling limited saturated VLC ceramide production and the associated inflammation. Mechanistically, we find that persistent inflammation mediated by VLC ceramides is largely dependent on sustained activity of REL, an immuno-modulatory transcription factor. Together, these data indicate that an IL-10-driven fatty acid desaturation programme rewires VLC ceramide accumulation and aberrant activation of REL. These studies support the idea that fatty acid homeostasis in innate immune cells serves as a key regulatory node to control pathologic inflammation and suggests that 'metabolic correction' of VLC homeostasis could be an important strategy to normalize dysregulated inflammation caused by the absence of IL-10.


Subject(s)
Inflammation , Interleukin-10 , Sphingolipids , Animals , Humans , Mice , Ceramides/chemistry , Ceramides/metabolism , Fatty Acids, Unsaturated/biosynthesis , Fatty Acids, Unsaturated/metabolism , Homeostasis , Immunity, Innate , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Interleukin-10/deficiency , Interleukin-10/genetics , Interleukin-10/metabolism , Proto-Oncogene Proteins c-rel , Sphingolipids/metabolism
3.
mBio ; : e0190723, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37971266

ABSTRACT

IMPORTANCE: Mammals do not eat continuously, instead concentrating their feeding to a restricted portion of the day. This behavior presents the mammalian gut microbiota with a fluctuating environment with consequences for host-microbiome interaction, infection risk, immune response, drug metabolism, and other aspects of health. We demonstrate that in mice, gut microbes elevate levels of an intracellular signaling molecule, (p)ppGpp, during the fasting phase of a time-restricted feeding regimen. Disabling this response in a representative human gut commensal species significantly reduces colonization during this host-fasting phase. This response appears to be general across species and conserved across mammalian gut communities, highlighting a pathway that allows healthy gut microbiomes to maintain stability in an unstable environment.

6.
bioRxiv ; 2023 May 08.
Article in English | MEDLINE | ID: mdl-37214856

ABSTRACT

Unchecked chronic inflammation is the underlying cause of many diseases, ranging from inflammatory bowel disease to obesity and neurodegeneration. Given the deleterious nature of unregulated inflammation, it is not surprising that cells have acquired a diverse arsenal of tactics to limit inflammation. IL-10 is a key anti-inflammatory cytokine that can limit immune cell activation and cytokine production in innate immune cell types; however, the exact mechanism by which IL-10 signaling subdues inflammation remains unclear. Here, we find that IL-10 signaling constrains sphingolipid metabolism. Specifically, we find increased saturated very long chain (VLC) ceramides are critical for the heightened inflammatory gene expression that is a hallmark of IL-10-deficient macrophages. Genetic deletion of CerS2, the enzyme responsible for VLC ceramide production, limited exacerbated inflammatory gene expression associated with IL-10 deficiency both in vitro and in vivo , indicating that "metabolic correction" is able to reduce inflammation in the absence of IL-10. Surprisingly, accumulation of saturated VLC ceramides was regulated by flux through the de novo mono-unsaturated fatty acid (MUFA) synthesis pathway, where addition of exogenous MUFAs could limit both saturated VLC ceramide production and inflammatory gene expression in the absence of IL-10 signaling. Together, these studies mechanistically define how IL-10 signaling manipulates fatty acid metabolism as part of its molecular anti-inflammatory strategy and could lead to novel and inexpensive approaches to regulate aberrant inflammation.

7.
bioRxiv ; 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36909469

ABSTRACT

Pseudomonas aeruginosa is intrinsically resistant to many classes of antibiotics, reflecting the restrictive nature of its outer membrane and the action of its numerous efflux systems. However, the dynamics of compound uptake, retention and efflux in this bacterium remain incompletely understood. Here, we exploited the sensor capabilities of a Z-nucleotide sensing riboswitch to create an experimental system able to identify physicochemical and structural properties of compounds that permeate the bacterial cell, avoid efflux, and perturb the folate cycle or de novo purine synthesis. In a first step, a collection of structurally diverse compounds enriched in antifolate drugs was screened for ZTP riboswitch reporter activity in efflux-deficient P. aeruginosa , allowing us to identify compounds that entered the cell and disrupted the folate pathway. These initial hits were then rescreened using isogenic efflux-proficient bacteria, allowing us to separate efflux substrates from efflux avoiders. We confirmed this categorization by measuring intracellular levels of select compounds in the efflux-deficient and - proficient strain using high resolution LC-MS. This simple yet powerful method, optimized for high throughput screening, enables the discovery of numerous permeable compounds that avoid efflux and paves the way for further refinement of the physicochemical and structural rules governing efflux in this multi-drug resistant Gram-negative pathogen. Importance: Treatment of Pseudomonas aeruginosa infections has become increasingly challenging. The development of novel antibiotics against this multi-drug resistant bacterium is a priority, but many drug candidates never achieve effective concentrations in the bacterial cell due due to its highly restrictive outer membrane and the action of multiple efflux pumps. Here, we develop a robust and simple reporter system in P. aeruginosa to screen chemical libraries and identify compounds that either enter the cell and remain inside, or enter the cell and are exported by efflux systems. This approach enables developing rules of compound uptake and retention in P. aeruginosa that will lead to more rational design of novel antibiotics.

8.
mSphere ; 8(2): e0006923, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36946743

ABSTRACT

Pseudomonas aeruginosa is intrinsically resistant to many classes of antibiotics, reflecting the restrictive nature of its outer membrane and the action of its numerous efflux systems. However, the dynamics of compound uptake, retention, and efflux in this bacterium remain incompletely understood. Here, we exploited the sensor capabilities of a Z-nucleotide-sensing riboswitch to create an experimental system able to identify physicochemical and structural properties of compounds that permeate the bacterial cell, avoid efflux, and perturb the folate cycle or de novo purine synthesis. In the first step, a collection of structurally diverse compounds enriched in antifolate drugs was screened for ZTP (5-aminoimidazole-4-carboxamide riboside 5'-triphosphate) riboswitch reporter activity in efflux-deficient P. aeruginosa, allowing us to identify compounds that entered the cell and disrupted the folate pathway. These initial hits were then rescreened using isogenic efflux-proficient bacteria, allowing us to separate efflux substrates from efflux avoiders. We confirmed this categorization by measuring intracellular levels of select compounds in the efflux-deficient and -proficient strain using high-resolution liquid chromatography-mass spectrometry (LC-MS). This simple yet powerful method, optimized for high-throughput screening, enables the discovery of numerous permeable compounds that avoid efflux and paves the way for further refinement of the physicochemical and structural rules governing efflux in this multidrug-resistant Gram-negative pathogen. IMPORTANCE Treatment of Pseudomonas aeruginosa infections has become increasingly challenging. The development of novel antibiotics against this multidrug-resistant bacterium is a priority, but many drug candidates never achieve effective concentrations in the bacterial cell due to its highly restrictive outer membrane and the action of multiple efflux pumps. Here, we develop a robust and simple reporter system in P. aeruginosa to screen chemical libraries and identify compounds that either enter the cell and remain inside or enter the cell and are exported by efflux systems. This approach enables the development of rules of compound uptake and retention in P. aeruginosa that will lead to more rational design of novel antibiotics.


Subject(s)
Pseudomonas aeruginosa , Riboswitch , Bacterial Outer Membrane Proteins/genetics , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism
9.
J Nat Prod ; 85(11): 2626-2640, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36346625

ABSTRACT

Escherichia coli isolates commonly inhabit the human microbiota, yet the majority of E. coli's small-molecule repertoire remains uncharacterized. We previously employed erythromycin-induced translational stress to facilitate the characterization of autoinducer-3 (AI-3) and structurally related pyrazinones derived from "abortive" tRNA synthetase reactions in pathogenic, commensal, and probiotic E. coli isolates. In this study, we explored the "missing" tryptophan-derived pyrazinone reaction and characterized two other families of metabolites that were similarly upregulated under erythromycin stress. Strikingly, the abortive tryptophanyl-tRNA synthetase reaction leads to a tetracyclic indole alkaloid metabolite (1) rather than a pyrazinone. Furthermore, erythromycin induced two naphthoquinone-functionalized metabolites (MK-hCys, 2; and MK-Cys, 3) and four lumazines (7-10). Using genetic and metabolite analyses coupled with biomimetic synthesis, we provide support that the naphthoquinones are derived from 4-dihydroxy-2-naphthoic acid (DHNA), an intermediate in the menaquinone biosynthetic pathway, and the amino acids homocysteine and cysteine. In contrast, the lumazines are dependent on a flavin intermediate and α-ketoacids from the aminotransferases AspC and TyrB. We show that one of the lumazine members (9), an indole-functionalized analogue, possesses antioxidant properties, modulates the anti-inflammatory fate of isolated TH17 cells, and serves as an aryl-hydrocarbon receptor (AhR) agonist. These three systems described here serve to illustrate that new metabolic branches could be more commonly derived from well-established primary metabolic pathways.


Subject(s)
Escherichia coli , Naphthoquinones , Stress, Physiological , Humans , Erythromycin/pharmacology , Escherichia coli/drug effects , Escherichia coli/metabolism , Naphthoquinones/metabolism , Tryptophan/metabolism , Tryptophan-tRNA Ligase/metabolism , Protein Biosynthesis/drug effects
10.
Science ; 378(6618): eabm3233, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36302024

ABSTRACT

Microbiota-derived metabolites that elicit DNA damage can contribute to colorectal cancer (CRC). However, the full spectrum of genotoxic chemicals produced by indigenous gut microbes remains to be defined. We established a pipeline to systematically evaluate the genotoxicity of an extensive collection of gut commensals from inflammatory bowel disease patients. We identified isolates from divergent phylogenies whose metabolites caused DNA damage and discovered a distinctive family of genotoxins-termed the indolimines-produced by the CRC-associated species Morganella morganii. A non-indolimine-producing M. morganii mutant lacked genotoxicity and failed to exacerbate colon tumorigenesis in mice. These studies reveal the existence of a previously unexplored universe of genotoxic small molecules from the microbiome that may affect host biology in homeostasis and disease.


Subject(s)
Colorectal Neoplasms , DNA Damage , Gastrointestinal Microbiome , Indoles , Inflammatory Bowel Diseases , Morganella morganii , Mutagens , Animals , Mice , Colorectal Neoplasms/genetics , Colorectal Neoplasms/microbiology , Inflammatory Bowel Diseases/microbiology , Morganella morganii/genetics , Morganella morganii/isolation & purification , Morganella morganii/metabolism , Indoles/metabolism , Carcinogenesis/genetics , Humans , Mutagens/metabolism , HeLa Cells
11.
Chembiochem ; 23(22): e202200490, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36112057

ABSTRACT

Neisseria meningitidis is a Gram-negative opportunistic pathogen that is responsible for causing human diseases with high mortality, such as septicemia and meningitis. The molecular mechanisms N. meningitidis employ to manipulate the immune system, translocate the mucosal and blood-brain barriers, and exert virulence are largely unknown. Human-associated bacteria encode a variety of bioactive small molecules with growing evidence for N-acyl amides as being important signaling molecules. However, only a small fraction of these metabolites has been identified from the human microbiota thus far. Here, we heterologously expressed an N-acyltransferase encoded in the obligate human pathogen N. meningitidis and identified 30 N-acyl amides with representative members serving as agonists of the G-protein coupled receptor (GPCR) S1PR4. During this process, we also characterized two mammalian N-acyl amides derived from the bovine medium. Both groups of metabolites suppress anti-inflammatory interleukin-10 signaling in human macrophage cell types, but they also suppress the pro-inflammatory interleukin-17A+ population in TH 17-differentiated CD4+ T cells.


Subject(s)
Neisseria meningitidis , Humans , Cattle , Animals , Sphingosine , Amides/pharmacology , Virulence , Signal Transduction , Mammals
12.
Proc Natl Acad Sci U S A ; 119(33): e2203318119, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35939687

ABSTRACT

γδ T cells are an abundant T cell population at the mucosa and are important in providing immune surveillance as well as maintaining tissue homeostasis. However, despite γδ T cells' origin in the thymus, detailed mechanisms regulating γδ T cell development remain poorly understood. N6-methyladenosine (m6A) represents one of the most common posttranscriptional modifications of messenger RNA (mRNA) in mammalian cells, but whether it plays a role in γδ T cell biology is still unclear. Here, we show that depletion of the m6A demethylase ALKBH5 in lymphocytes specifically induces an expansion of γδ T cells, which confers enhanced protection against gastrointestinal Salmonella typhimurium infection. Mechanistically, loss of ALKBH5 favors the development of γδ T cell precursors by increasing the abundance of m6A RNA modification in thymocytes, which further reduces the expression of several target genes including Notch signaling components Jagged1 and Notch2. As a result, impairment of Jagged1/Notch2 signaling contributes to enhanced proliferation and differentiation of γδ T cell precursors, leading to an expanded mature γδ T cell repertoire. Taken together, our results indicate a checkpoint role of ALKBH5 and m6A modification in the regulation of γδ T cell early development.


Subject(s)
AlkB Homolog 5, RNA Demethylase , Intraepithelial Lymphocytes , RNA, Messenger , AlkB Homolog 5, RNA Demethylase/genetics , AlkB Homolog 5, RNA Demethylase/metabolism , Animals , Intraepithelial Lymphocytes/enzymology , Intraepithelial Lymphocytes/immunology , Jagged-1 Protein/metabolism , Mice , Mice, Knockout , RNA, Messenger/metabolism , Receptor, Notch2/metabolism , Signal Transduction/genetics
13.
Nature ; 609(7926): 348-353, 2022 09.
Article in English | MEDLINE | ID: mdl-35978195

ABSTRACT

The mammalian immune system uses various pattern recognition receptors to recognize invaders and host damage and transmits this information to downstream immunometabolic signalling outcomes. Laccase domain-containing 1 (LACC1) protein is an enzyme highly expressed in inflammatory macrophages and serves a central regulatory role in multiple inflammatory diseases such as inflammatory bowel diseases, arthritis and clearance of microbial infection1-4. However, the biochemical roles required for LACC1 functions remain largely undefined. Here we elucidated a shared biochemical function of LACC1 in mice and humans, converting L-citrulline to L-ornithine (L-Orn) and isocyanic acid and serving as a bridge between proinflammatory nitric oxide synthase (NOS2) and polyamine immunometabolism. We validated the genetic and mechanistic connections among NOS2, LACC1 and ornithine decarboxylase 1 (ODC1) in mouse models and bone marrow-derived macrophages infected by Salmonella enterica Typhimurium. Strikingly, LACC1 phenotypes required upstream NOS2 and downstream ODC1, and Lacc1-/- chemical complementation with its product L-Orn significantly restored wild-type activities. Our findings illuminate a previously unidentified pathway in inflammatory macrophages, explain why its deficiency may contribute to human inflammatory diseases and suggest that L-Orn could serve as a nutraceutical to ameliorate LACC1-associated immunological dysfunctions such as arthritis or inflammatory bowel disease.


Subject(s)
Inflammation , Intracellular Signaling Peptides and Proteins , Macrophages , Nitric Oxide Synthase Type II , Animals , Arthritis/immunology , Arthritis/metabolism , Citrulline/metabolism , Cyanates/metabolism , Humans , Inflammation/enzymology , Inflammation/immunology , Inflammation/metabolism , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Macrophages/immunology , Macrophages/metabolism , Mice , Nitric Oxide Synthase Type II/metabolism , Ornithine/metabolism , Ornithine Decarboxylase/metabolism , Polyamines/metabolism , Salmonella typhimurium/immunology
14.
Nature ; 606(7914): 522-526, 2022 06.
Article in English | MEDLINE | ID: mdl-35614213

ABSTRACT

Birds and mammals independently evolved the highest metabolic rates among living animals1. Their metabolism generates heat that enables active thermoregulation1, shaping the ecological niches they can occupy and their adaptability to environmental change2. The metabolic performance of birds, which exceeds that of mammals, is thought to have evolved along their stem lineage3-10. However, there is no proxy that enables the direct reconstruction of metabolic rates from fossils. Here we use in situ Raman and Fourier-transform infrared spectroscopy to quantify the in vivo accumulation of metabolic lipoxidation signals in modern and fossil amniote bones. We observe no correlation between atmospheric oxygen concentrations11 and metabolic rates. Inferred ancestral states reveal that the metabolic rates consistent with endothermy evolved independently in mammals and plesiosaurs, and are ancestral to ornithodirans, with increasing rates along the avian lineage. High metabolic rates were acquired in pterosaurs, ornithischians, sauropods and theropods well before the advent of energetically costly adaptations, such as flight in birds. Although they had higher metabolic rates ancestrally, ornithischians reduced their metabolic abilities towards ectothermy. The physiological activities of such ectotherms were dependent on environmental and behavioural thermoregulation12, in contrast to the active lifestyles of endotherms1. Giant sauropods and theropods were not gigantothermic9,10, but true endotherms. Endothermy in many Late Cretaceous taxa, in addition to crown mammals and birds, suggests that attributes other than metabolism determined their fate during the terminal Cretaceous mass extinction.


Subject(s)
Birds , Dinosaurs , Energy Metabolism , Fossils , Phylogeny , Animals , Birds/metabolism , Bone and Bones/metabolism , Dinosaurs/anatomy & histology , Dinosaurs/metabolism
15.
Cell ; 185(9): 1487-1505.e14, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35366417

ABSTRACT

Small molecules encoded by biosynthetic pathways mediate cross-species interactions and harbor untapped potential, which has provided valuable compounds for medicine and biotechnology. Since studying biosynthetic gene clusters in their native context is often difficult, alternative efforts rely on heterologous expression, which is limited by host-specific metabolic capacity and regulation. Here, we describe a computational-experimental technology to redesign genes and their regulatory regions with hybrid elements for cross-species expression in Gram-negative and -positive bacteria and eukaryotes, decoupling biosynthetic capacity from host-range constraints to activate silenced pathways. These synthetic genetic elements enabled the discovery of a class of microbiome-derived nucleotide metabolites-tyrocitabines-from Lactobacillus iners. Tyrocitabines feature a remarkable orthoester-phosphate, inhibit translational activity, and invoke unexpected biosynthetic machinery, including a class of "Amadori synthases" and "abortive" tRNA synthetases. Our approach establishes a general strategy for the redesign, expression, mobilization, and characterization of genetic elements in diverse organisms and communities.


Subject(s)
Biosynthetic Pathways , Host Microbial Interactions , Microbiota , Synthetic Biology/methods , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Eukaryota/genetics , Eukaryota/metabolism , Genetic Engineering , Humans , Metabolomics
16.
J Nat Prod ; 84(10): 2692-2699, 2021 10 22.
Article in English | MEDLINE | ID: mdl-34581573

ABSTRACT

The entomopathogenic bacterium Xenorhabdus bovienii exists in a mutualistic relationship with nematodes of the genus Steinernema. Free-living infective juveniles of Steinernema prey on insect larvae and regurgitate X. bovienii within the hemocoel of a host larva. X. bovienii subsequently produces a complex array of specialized metabolites and effector proteins that kill the insect and regulate various aspects of the trilateral symbiosis. While Xenorhabdus species are rich producers of secondary metabolites, many of their biosynthetic gene clusters remain uncharacterized. Here, we describe a nonribosomal peptide synthetase (NRPS) identified through comparative genomics analysis that is widely conserved in Xenorhabdus species. Heterologous expression of this NRPS gene from X. bovienii in E. coli led to the discovery of a family of lipo-tripeptides that chromatographically appear as pairs, containing either a C-terminal carboxylic acid or carboxamide. Coexpression of the NRPS with the leupeptin protease inhibitor pathway enhanced production, facilitating isolation and characterization efforts. The new lipo-tripeptides were also detected in wild-type X. bovienii cultures. These metabolites, termed bovienimides, share an uncommon C-terminal d-citrulline residue. The NRPS lacked a dedicated chain termination domain, resulting in product diversification and release from the assembly line through reactions with ammonia, water, or exogenous alcohols.


Subject(s)
Citrulline/chemistry , Lipopeptides/biosynthesis , Peptide Synthases/metabolism , Xenorhabdus/enzymology , Computational Biology , Metabolomics , Molecular Structure
17.
Nat Chem Biol ; 17(10): 1016-1026, 2021 10.
Article in English | MEDLINE | ID: mdl-34552219

ABSTRACT

Escherichia coli are a common component of the human microbiota, and isolates exhibit probiotic, commensal and pathogenic roles in the host. E. coli members often use diverse small molecule chemistry to regulate intrabacterial, intermicrobial and host-bacterial interactions. While E. coli are considered to be a well-studied model organism in biology, much of their chemical arsenal has only more recently been defined, and much remains to be explored. Here we describe chemical signaling systems in E. coli in the context of the broader field of metabolism at the host-bacteria interface and the role of this signaling in disease modulation.


Subject(s)
Escherichia coli/metabolism , Gene Expression Regulation, Bacterial/physiology , Host Microbial Interactions/physiology , Humans , Microbiota , Probiotics
18.
Org Lett ; 23(17): 6895-6899, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34406772

ABSTRACT

Colibactin is a genotoxic hybrid polyketide-nonribosomal peptide that drives colorectal cancer initiation. While clinical data suggest colibactin genotoxicity in vivo is largely caused by the major DNA-cross-linking metabolite, the colibactin locus produces a diverse collection of metabolites with mostly unknown biological activities. Here, we describe 10 new colibactin pathway metabolites (1-10) that are dependent on its α-aminomalonyl-carrier protein. The most abundant metabolites, 1 and 2, were isolated and structurally characterized mainly by nuclear magnetic resonance spectroscopy to be γ-lactam derivatives, and the remaining related structures were inferred via shared biosynthetic logic. Our proposed formation of 1-10, which is supported by stereochemical analysis, invokes cross-talk between colibactin and fatty acid biosynthesis, illuminating further the complexity of this diversity-oriented pathway.


Subject(s)
Escherichia coli/chemistry , Fatty Acids/chemistry , Peptides/chemistry , Polyketides/chemistry , DNA Damage , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Fatty Acids/metabolism , Humans , Lactams/chemistry , Lactams/metabolism , Molecular Structure
20.
Annu Rev Biochem ; 90: 789-815, 2021 06 20.
Article in English | MEDLINE | ID: mdl-33770448

ABSTRACT

The human microbiome encodes a second genome that dwarfs the genetic capacity of the host. Microbiota-derived small molecules can directly target human cells and their receptors or indirectly modulate host responses through functional interactions with other microbes in their ecological niche. Their biochemical complexity has profound implications for nutrition, immune system development, disease progression, and drug metabolism, as well as the variation in these processes that exists between individuals. While the species composition of the human microbiome has been deeply explored, detailed mechanistic studies linking specific microbial molecules to host phenotypes are still nascent. In this review, we discuss challenges in decoding these interaction networks, which require interdisciplinary approaches that combine chemical biology, microbiology, immunology, genetics, analytical chemistry, bioinformatics, and synthetic biology. We highlight important classes of microbiota-derived small molecules and notable examples. An understanding of these molecular mechanisms is central to realizing the potential of precision microbiome editing in health, disease, and therapeutic responses.


Subject(s)
Metagenomics/methods , Microbiota/physiology , Peptides/metabolism , Polyketides/metabolism , Gastrointestinal Microbiome/genetics , Gastrointestinal Microbiome/physiology , Humans , Microbiota/genetics , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...