Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
mBio ; 13(3): e0109922, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35536005

ABSTRACT

Human metapneumovirus (HMPV) inclusion bodies (IBs) are dynamic structures required for efficient viral replication and transcription. The minimum components needed to form IB-like structures in cells are the nucleoprotein (N) and the tetrameric phosphoprotein (P). HMPV P binds to the following two versions of the N protein in infected cells: N-terminal P residues interact with monomeric N (N0) to maintain a pool of protein to encapsidate new RNA and C-terminal P residues interact with oligomeric, RNA-bound N (N-RNA). Recent work on other negative-strand viruses has suggested that IBs are, at least in part, liquid-like phase-separated membraneless organelles. Here, HMPV IBs in infected or transfected cells were shown to possess liquid organelle properties, such as fusion and fission. Recombinant versions of HMPV N and P proteins were purified to analyze the interactions required to drive phase separation in vitro. Purified HMPV P was shown to form liquid droplets in isolation. This observation is distinct from other viral systems that also form IBs. Partial removal of nucleic acid from purified P altered phase-separation dynamics, suggesting that nucleic acid interactions play a role in IB formation. HMPV P also recruits monomeric N (N0-P) and N-RNA to droplets in vitro. These findings suggest that HMPV P may also act as a scaffold protein to mediate multivalent interactions with monomeric and oligomeric N, as well as RNA, to promote phase separation of IBs. Together, these findings highlight an additional layer of regulation in HMPV replication by the viral P and N proteins. IMPORTANCE Human metapneumovirus (HMPV) is a leading cause of respiratory disease among children, immunocompromised individuals, and the elderly. Currently, no vaccines or antivirals are available for the treatment of HMPV infections. Cytoplasmic inclusion bodies (IBs), where HMPV replication and transcription occur, represent a promising target for the development of novel antivirals. The HMPV nucleoprotein (N) and phosphoprotein (P) are the minimal components needed for IB formation in eukaryotic cells. However, interactions that regulate the formation of these dynamic structures are poorly understood. Here, we showed that HMPV IBs possess the properties of liquid organelles and that purified HMPV P phase separates independently in vitro. Our work suggests that HMPV P phase-separation dynamics are altered by nucleic acid. We provide strong evidence that, unlike results reported from other viral systems, HMPV P alone can serve as a scaffold for multivalent interactions with monomeric (N0) and oligomeric (N-RNA) HMPV N for IB formation.


Subject(s)
Inclusion Bodies, Viral , Metapneumovirus , Nucleic Acids , Humans , Antiviral Agents , Metapneumovirus/genetics , Nucleoproteins/genetics , Nucleoproteins/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , RNA , Virus Replication
2.
Cell Commun Signal ; 18(1): 137, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32859215

ABSTRACT

The serine/threonine phosphatase calcineurin acts as a crucial connection between calcium signaling the phosphorylation states of numerous important substrates. These substrates include, but are not limited to, transcription factors, receptors and channels, proteins associated with mitochondria, and proteins associated with microtubules. Calcineurin is activated by increases in intracellular calcium concentrations, a process that requires the calcium sensing protein calmodulin binding to an intrinsically disordered regulatory domain in the phosphatase. Despite having been studied for around four decades, the activation of calcineurin is not fully understood. This review largely focuses on what is known about the activation process and highlights aspects that are currently not understood. Video abstract.


Subject(s)
Calcineurin/metabolism , Calcium/metabolism , Animals , Calcineurin/chemistry , Catalytic Domain , Enzyme Activation , Humans , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Models, Molecular , Signal Transduction
3.
Proteins ; 88(12): 1607-1619, 2020 12.
Article in English | MEDLINE | ID: mdl-32654182

ABSTRACT

Recent work has revealed that the association of a disordered region of a protein with a folded binding partner can occur as rapidly as association between two folded proteins. This is the case for the phosphatase calcineurin (CaN) and its association with its activator calmodulin. Calmodulin binds to the intrinsically disordered regulatory domain of CaN. Previous studies have shown that electrostatic steering can accelerate the binding of folded proteins with disordered ligands. Given that electrostatic forces are strong determinants of disordered protein ensembles, the relationship between electrostatics, conformational ensembles, and quaternary interactions is unclear. Here, we employ experimental approaches to explore the impact of electrostatic interactions on the association of calmodulin with the disordered regulatory region of CaN. We find that estimated association rate constants of calmodulin with our chosen calmodulin-substrates are within the diffusion-limited regime. The association rates are dependent on the ionic strength, indicating that favorable electrostatic forces increase the rate of association. Further, we show that charged amino acids outside the calmodulin-binding site modulate the binding rate. Conformational ensembles obtained from computer simulations suggest that electrostatic interactions within the regulatory domain might bias the conformational ensemble such that the calmodulin binding region is readily accessible. Given the prevalence of charged residues in disordered protein chains, our findings are likely relevant to many protein-protein interactions.


Subject(s)
Calcineurin/chemistry , Calcineurin/metabolism , Calmodulin/chemistry , Calmodulin/metabolism , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Protein Folding , Binding Sites , Humans , Kinetics , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Static Electricity
4.
Biochemistry ; 58(39): 4070-4085, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31483613

ABSTRACT

Calcineurin (CaN) is a calcium-dependent phosphatase involved in numerous signaling pathways. Its activation is in part driven by the binding of calmodulin (CaM) to a CaM recognition region (CaMBR) within CaN's regulatory domain (RD). However, secondary interactions between CaM and the CaN RD may be necessary to fully activate CaN. Specifically, it is established that the CaN RD folds upon CaM binding and a region C-terminal to CaMBR, the "distal helix", assumes an α-helix fold and contributes to activation [Dunlap, T. B., et al. (2013) Biochemistry 52, 8643-8651]. We hypothesized in that previous study that this distal helix can bind CaM in a region distinct from the canonical CaMBR. To test this hypothesis, we utilized molecular simulations, including replica-exchange molecular dynamics, protein-protein docking, and computational mutagenesis, to determine potential distal helix-binding sites on CaM's surface. We isolated a potential binding site on CaM (site D) that facilitates moderate-affinity interprotein interactions and predicted that mutation of site D residues K30 and G40 on CaM would weaken CaN distal helix binding. We experimentally confirmed that two variants (K30E and G40D) indicate weaker binding of a phosphate substrate p-nitrophenyl phosphate to the CaN catalytic site by a phosphatase assay. This weakened substrate affinity is consistent with competitive binding of the CaN autoinhibition domain to the catalytic site, which we suggest is due to the weakened distal helix-CaM interactions. This study therefore suggests a novel mechanism for CaM regulation of CaN that may extend to other CaM targets.


Subject(s)
Calcineurin/chemistry , Calcineurin/metabolism , Calmodulin/chemistry , Calmodulin/metabolism , Amino Acid Sequence , Binding, Competitive , Calcium/metabolism , Catalytic Domain , Hydrogen Bonding , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Interaction Domains and Motifs
5.
Eur J Hum Genet ; 27(1): 61-69, 2019 01.
Article in English | MEDLINE | ID: mdl-30254215

ABSTRACT

PPP3CA encodes calmodulin-binding catalytic subunit of calcineurin, a ubiquitously expressed calcium/calmodulin-regulated protein phosphatase. Recently de novo PPP3CA variants were reported as a cause of disease in 12 subjects presenting with epileptic encephalopathy and dysmorphic features. We describe a boy with similar phenotype and severe early onset epileptic encephalopathy in whom a novel de novo c.1324C>T (p.(Gln442Ter)) PPP3CA variant was found by whole exome sequencing. Western blot experiments in patient's cells (EBV transformed lymphocytes and neuronal cells derived through reprogramming) indicate that despite normal mRNA abundance the protein expression level is strongly reduced both for the mutated and wild-type protein. By in vitro studies with recombinant protein expressed in E. coli we show that c.1324C>T (p.(Gln442Ter)) results in constitutive activation of the enzyme. Our results confirm the role of PPP3CA defects in pathogenesis of a distinct neurodevelopmental disorder including severe epilepsy and dysmorphism and provide further functional clues regarding the pathogenic mechanism.


Subject(s)
Calcineurin/genetics , Craniofacial Abnormalities/genetics , Epilepsy/genetics , Mutation, Missense , Calcineurin/metabolism , Cells, Cultured , Child , Craniofacial Abnormalities/pathology , Down-Regulation , Epilepsy/pathology , Humans , Male , Phenotype , Syndrome
6.
Biochim Biophys Acta Gen Subj ; 1862(12): 2651-2659, 2018 12.
Article in English | MEDLINE | ID: mdl-30071273

ABSTRACT

Calcineurin (CaN) is a serine/threonine phosphatase that regulates a variety of physiological and pathophysiological processes in mammalian tissue. The calcineurin (CaN) regulatory domain (RD) is responsible for regulating the enzyme's phosphatase activity, and is believed to be highly-disordered when inhibiting CaN, but undergoes a disorder-to-order transition upon diffusion-limited binding with the regulatory protein calmodulin (CaM). The prevalence of polar and charged amino acids in the regulatory domain (RD) suggests electrostatic interactions are involved in mediating calmodulin (CaM) binding, yet the lack of atomistic-resolution data for the bound complex has stymied efforts to probe how the RD sequence controls its conformational ensemble and long-range attractions contribute to target protein binding. In the present study, we investigated via computational modeling the extent to which electrostatics and structural disorder facilitate CaM/CaN association kinetics. Specifically, we examined several RD constructs that contain the CaM binding region (CAMBR) to characterize the roles of electrostatics versus conformational diversity in controlling diffusion-limited association rates, via microsecond-scale molecular dynamics (MD) and Brownian dynamic (BD) simulations. Our results indicate that the RD amino acid composition and sequence length influence both the dynamic availability of conformations amenable to CaM binding, as well as long-range electrostatic interactions to steer association. These findings provide intriguing insight into the interplay between conformational diversity and electrostatically-driven protein-protein association involving CaN, which are likely to extend to wide-ranging diffusion-limited processes regulated by intrinsically-disordered proteins.


Subject(s)
Calcineurin/metabolism , Intrinsically Disordered Proteins/metabolism , Protein Domains , Static Electricity , Amino Acid Sequence , Amino Acids/analysis , Calcineurin/chemistry , Intrinsically Disordered Proteins/chemistry , Kinetics , Molecular Dynamics Simulation , Protein Binding , Protein Conformation
7.
Biomol NMR Assign ; 11(2): 215-219, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28803387

ABSTRACT

Calcineurin (CaN) plays an important role in T-cell activation, cardiac system development and nervous system function. Previous studies have demonstrated that the regulatory domain (RD) of CaN binds calmodulin (CaM) towards the N-terminal end. Calcium-loaded CaM activates the serine/threonine phosphatase activity of CaN by binding to the RD, although the mechanistic details of this interaction remain unclear. It is thought that CaM binding at the RD displaces the auto-inhibitory domain (AID) from the active site of CaN, activating phosphatase activity. In the absence of calcium-loaded CaM, the RD is disordered, and binding of CaM induces folding in the RD. In order to provide mechanistic detail about the CaM-CaN interaction, we have undertaken an NMR study of the RD of CaN. Complete 13C, 15N and 1H assignments of the RD of CaN were obtained using solution NMR spectroscopy. The backbone of RD has been assigned using a combination of 13C-detected CON-IPAP experiments as well as traditional HNCO, HNCA, HNCOCA and HNCACB-based 3D NMR spectroscopy. A 15N-resolved TOCSY experiment has been used to assign Hα and Hß chemical shifts.


Subject(s)
Calcineurin/chemistry , Catalytic Domain , Nuclear Magnetic Resonance, Biomolecular , Humans
8.
Biochemistry ; 55(22): 3092-101, 2016 06 07.
Article in English | MEDLINE | ID: mdl-27187005

ABSTRACT

Calcineurin is a Ser/Thr phosphatase that is important for key biological processes, including immune system activation. We previously identified a region in the intrinsically disordered regulatory domain of calcineurin that forms a critical amphipathic α-helix (the "distal helix") that is required for complete activation of calcineurin. This distal helix was shown to have a Tm close to that of human body temperature. Because the Tm was determined in dilute buffer, we hypothesized that other factors inherent to a cellular environment might modulate the stability of the distal helix. One such factor that contributes to stability in other proteins is macromolecular crowding. The cell cytoplasm is comprised of up to 400 g/L protein, lipids, nucleic acids, and other compounds. We hypothesize that the presence of such crowders could increase the thermal stability of the distal helix and thus lead to a more robust activation of calcineurin in vivo. Using biophysical and biochemical approaches, we show that the distal helix of calcineurin is indeed stabilized when crowded by the synthetic polymers dextran 70 and ficoll 70, and that this stabilization of the distal helix increases the activity of calcineurin.


Subject(s)
Calcineurin/metabolism , Calmodulin/metabolism , Dextrans/metabolism , Ficoll/metabolism , Macromolecular Substances/metabolism , Calcineurin/chemistry , Calmodulin/chemistry , Circular Dichroism , Enzyme Stability , Humans , Protein Binding
9.
ACS Chem Biol ; 11(7): 1795-9, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27128111

ABSTRACT

Nurr1/NR4A2 is an orphan nuclear receptor, and currently there are no known natural ligands that bind Nurr1. A recent metabolomics study identified unsaturated fatty acids, including arachidonic acid and docosahexaenoic acid (DHA), that interact with the ligand-binding domain (LBD) of a related orphan receptor, Nur77/NR4A1. However, the binding location and whether these ligands bind other NR4A receptors were not defined. Here, we show that unsaturated fatty acids also interact with the Nurr1 LBD, and solution NMR spectroscopy reveals the binding epitope of DHA at its putative ligand-binding pocket. Biochemical assays reveal that DHA-bound Nurr1 interacts with high affinity with a peptide derived from PIASγ, a protein that interacts with Nurr1 in cellular extracts, and DHA also affects cellular Nurr1 transactivation. This work is the first structural report of a natural ligand binding to a canonical NR4A ligand-binding pocket and indicates a natural ligand can bind and affect Nurr1 function.


Subject(s)
Fatty Acids, Unsaturated/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Binding Sites , Magnetic Resonance Spectroscopy
10.
Biochemistry ; 53(36): 5779-90, 2014 Sep 16.
Article in English | MEDLINE | ID: mdl-25144868

ABSTRACT

Calcineurin is an essential serine/threonine phosphatase that plays vital roles in neuronal development and function, heart growth, and immune system activation. Calcineurin is unique in that it is the only phosphatase known to be activated by calmodulin in response to increasing intracellular calcium concentrations. Calcium-loaded calmodulin binds to the regulatory domain of calcineurin, resulting in a conformational change that removes an autoinhibitory domain from the active site of the phosphatase. We have determined a 1.95 Å crystal structure of calmodulin bound to a peptide corresponding to its binding region from calcineurin. In contrast to previous structures of this complex, our structure has a stoichiometry of 1:1 and has the canonical collapsed, wraparound conformation observed for many calmodulin-substrate complexes. In addition, we have used size-exclusion chromatography and time-resolved fluorescence to probe the stoichiometry of binding of calmodulin to a construct corresponding to almost the entire regulatory domain from calcineurin, again finding a 1:1 complex. Taken in sum, our data strongly suggest that a single calmodulin protein is necessary and sufficient to bind to and activate each calcineurin enzyme.


Subject(s)
Calcineurin/metabolism , Calmodulin/metabolism , Base Sequence , Calcineurin/chemistry , Calmodulin/chemistry , Chromatography, Gel , DNA Primers , Electrophoresis, Polyacrylamide Gel , Humans , Molecular Conformation , Spectrometry, Fluorescence
11.
Biochemistry ; 52(48): 8643-51, 2013 Dec 03.
Article in English | MEDLINE | ID: mdl-24191726

ABSTRACT

Calcineurin (CaN) is a calmodulin-activated, serine/threonine phosphatase that is necessary for cardiac, vasculature, and nervous system development, as well as learning and memory, skeletal muscle growth, and immune system activation. CaN is activated in a manner similar to that of the calmodulin (CaM)-activated kinases. CaM binds CaN's regulatory domain (RD) and causes a conformational change that removes CaN's autoinhibitory domain (AID) from its catalytic site, activating CaN. In the CaM-activated kinases, the CaM binding region (CaMBR) is located just C-terminal to the AID, whereas in CaN, the AID is 52 residues C-terminal to the CaMBR. Previously published data have shown that these 52 residues in CaN's RD are disordered but approximately half of them gain structure, likely α-helical, upon CaM binding. In this work, we confirm that this increase in the level of structure is α-helical. We posit that this region forms an amphipathic helix upon CaM binding and folds onto the remainder of the RD:CaM complex, removing the AID. Förster resonance energy transfer data suggest the C-terminal end of this distal helix is relatively close to the N-terminal end of the CaMBR when the RD is bound by CaM. We show by circular dichroism spectroscopy and thermal melts that mutations on the hydrophobic face of the distal helix disrupt the structure gained upon CaM binding. Additionally, kinetic analysis of CaN activity suggests that these mutations affect CaN's ability to bind substrate, likely a result of the AID being able to bind to the active site even when CaM is bound. Our data demonstrate the presence of this distal helix and suggest it folds onto the remainder of the RD:CaM complex, creating a hairpinlike chain reversal that removes the AID from the active site.


Subject(s)
Calcineurin/chemistry , Amino Acid Sequence , Binding Sites , Calcineurin/genetics , Calmodulin/chemistry , Calmodulin/metabolism , Enzyme Stability , Humans , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary/physiology , Protein Subunits/chemistry , Protein Subunits/metabolism , Temperature
12.
PLoS Pathog ; 9(8): e1003564, 2013.
Article in English | MEDLINE | ID: mdl-23990785

ABSTRACT

The fungus Aspergillus fumigatus is a leading infectious killer in immunocompromised patients. Calcineurin, a calmodulin (CaM)-dependent protein phosphatase comprised of calcineurin A (CnaA) and calcineurin B (CnaB) subunits, localizes at the hyphal tips and septa to direct A. fumigatus invasion and virulence. Here we identified a novel serine-proline rich region (SPRR) located between two conserved CnaA domains, the CnaB-binding helix and the CaM-binding domain, that is evolutionarily conserved and unique to filamentous fungi and also completely absent in human calcineurin. Phosphopeptide enrichment and tandem mass spectrometry revealed the phosphorylation of A. fumigatus CnaA in vivo at four clustered serine residues (S406, S408, S410 and S413) in the SPRR. Mutation of the SPRR serine residues to block phosphorylation led to significant hyphal growth and virulence defects, indicating the requirement of calcineurin phosphorylation at the SPRR for its activity and function. Complementation analyses of the A. fumigatus ΔcnaA strain with cnaA homologs from the pathogenic basidiomycete Cryptococcus neoformans, the pathogenic zygomycete Mucor circinelloides, the closely related filamentous fungi Neurospora crassa, and the plant pathogen Magnaporthe grisea, revealed filamentous fungal-specific phosphorylation of CnaA in the SPRR and SPRR homology-dependent restoration of hyphal growth. Surprisingly, circular dichroism studies revealed that, despite proximity to the CaM-binding domain of CnaA, phosphorylation of the SPRR does not alter protein folding following CaM binding. Furthermore, mutational analyses in the catalytic domain, CnaB-binding helix, and the CaM-binding domains revealed that while the conserved PxIxIT substrate binding motif in CnaA is indispensable for septal localization, CaM is required for its function at the hyphal septum but not for septal localization. We defined an evolutionarily conserved novel mode of calcineurin regulation by phosphorylation in filamentous fungi in a region absent in humans. These findings suggest the possibility of harnessing this unique SPRR for innovative antifungal drug design to combat invasive aspergillosis.


Subject(s)
Aspergillus fumigatus/enzymology , Calcineurin/metabolism , Fungal Proteins/metabolism , Hyphae/enzymology , Models, Biological , Amino Acid Motifs , Animals , Antifungal Agents/chemistry , Antifungal Agents/therapeutic use , Aspergillosis/drug therapy , Aspergillosis/enzymology , Aspergillosis/genetics , Aspergillus fumigatus/genetics , Calcineurin/chemistry , Calcineurin/immunology , Calcineurin Inhibitors , Fungal Proteins/antagonists & inhibitors , Fungal Proteins/chemistry , Fungal Proteins/genetics , Humans , Hyphae/genetics , Male , Mice , Phosphorylation , Protein Structure, Tertiary
13.
Nucleic Acids Res ; 41(6): 3819-32, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23393189

ABSTRACT

The serotonin receptor 2C plays a central role in mood and appetite control. It undergoes pre-mRNA editing as well as alternative splicing. The RNA editing suggests that the pre-mRNA forms a stable secondary structure in vivo. To identify substances that promote alternative exons inclusion, we set up a high-throughput screen and identified pyrvinium pamoate as a drug-promoting exon inclusion without editing. Circular dichroism spectroscopy indicates that pyrvinium pamoate binds directly to the pre-mRNA and changes its structure. SHAPE (selective 2'-hydroxyl acylation analysed by primer extension) assays show that part of the regulated 5'-splice site forms intramolecular base pairs that are removed by this structural change, which likely allows splice site recognition and exon inclusion. Genome-wide analyses show that pyrvinium pamoate regulates >300 alternative exons that form secondary structures enriched in A-U base pairs. Our data demonstrate that alternative splicing of structured pre-mRNAs can be regulated by small molecules that directly bind to the RNA, which is reminiscent to an RNA riboswitch.


Subject(s)
Alternative Splicing/drug effects , Pyrvinium Compounds/pharmacology , RNA, Messenger/drug effects , Receptor, Serotonin, 5-HT2C/genetics , Base Sequence , Exons , HEK293 Cells , High-Throughput Screening Assays , Humans , Molecular Sequence Data , Nucleic Acid Conformation , Phylogeny , Pyrvinium Compounds/metabolism , RNA Editing , RNA Precursors/metabolism , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/drug effects , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Receptor, Serotonin, 5-HT2C/metabolism , Ribonucleoprotein, U1 Small Nuclear/metabolism , Spliceosomes/metabolism
14.
Intrinsically Disord Proteins ; 1(1): e26412, 2013.
Article in English | MEDLINE | ID: mdl-28516023

ABSTRACT

How intrinsically disordered proteins and regions evade degradation by cellular machinery evolved to recognize unfolded and misfolded chains remains a vexing question. One potential means by which this can occur is the disorder is transient in nature. That is, the disorder exists just long enough for it to be bound by a partner biomolecule and fold. A review of 30 y of studies of calmodulin's activation of calcineurin suggests that the regulatory domain of this vital phosphatase is a transiently disordered region. During activation, the regulatory domain progresses from a folded state, to disordered, followed by folding upon being bound by calmodulin. The transient disordered state of this domain is part of a critical intermediate state that facilitates the rapid binding of calmodulin. Building upon "fly-casting" as a means of facilitating partner binding, the mechanism by which calcineurin undergoes activation and subsequent deactivation could be considered "catch and release."

15.
Proteins ; 81(4): 607-12, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23180611

ABSTRACT

In this work, we have examined contributions to the thermodynamics of calmodulin (CaM) binding from the intrinsic propensity for target peptides to adopt an α-helical conformation. CaM target sequences are thought to commonly reside in disordered regions within proteins. Using the ability of TFE to induce α-helical structure as a proxy, the six peptides studied range from having almost no propensity to adopt α-helical structure through to a very high propensity. This despite all six peptides having similar CaM-binding affinities. Our data indicate there is some correlation between the deduced propensities and the thermodynamics of CaM binding. This finding implies that molecular recognition features, such as CaM target sequences, may possess a broad range of propensities to adopt local structure. Given that these peptides bind to CaM with similar affinities, the data suggest that having a higher propensity to adopt α-helical structure does not necessarily result in tighter binding, and that the mechanism of CaM binding is very dependent on the nature of the substrate sequence.


Subject(s)
Calmodulin/metabolism , Peptides/chemistry , Peptides/metabolism , Amino Acid Sequence , Binding Sites , Molecular Sequence Data , Protein Binding , Protein Interaction Mapping , Protein Structure, Secondary , Thermodynamics
16.
J Biol Chem ; 287(35): 30035-48, 2012 Aug 24.
Article in English | MEDLINE | ID: mdl-22761418

ABSTRACT

Viral fusion proteins are intriguing molecular machines that undergo drastic conformational changes to facilitate virus-cell membrane fusion. During fusion a hydrophobic region of the protein, termed the fusion peptide (FP), is inserted into the target host cell membrane, with subsequent conformational changes culminating in membrane merger. Class I fusion proteins contain FPs between 20 and 30 amino acids in length that are highly conserved within viral families but not between. To examine the sequence dependence of the Hendra virus (HeV) fusion (F) protein FP, the first eight amino acids were mutated first as double, then single, alanine mutants. Mutation of highly conserved glycine residues resulted in inefficient F protein expression and processing, whereas substitution of valine residues resulted in hypofusogenic F proteins despite wild-type surface expression levels. Synthetic peptides corresponding to a portion of the HeV F FP were shown to adopt an α-helical secondary structure in dodecylphosphocholine micelles and small unilamellar vesicles using circular dichroism spectroscopy. Interestingly, peptides containing point mutations that promote lower levels of cell-cell fusion within the context of the whole F protein were less α-helical and induced less membrane disorder in model membranes. These data represent the first extensive structure-function relationship of any paramyxovirus FP and demonstrate that the HeV F FP and potentially other paramyxovirus FPs likely require an α-helical structure for efficient membrane disordering and fusion.


Subject(s)
Membrane Fusion , Paramyxoviridae , Viral Fusion Proteins , Amino Acid Sequence , Amino Acid Substitution , Animals , Chlorocebus aethiops , Circular Dichroism , Mutation, Missense , Paramyxoviridae/chemistry , Paramyxoviridae/genetics , Paramyxoviridae/metabolism , Protein Structure, Secondary , Structure-Activity Relationship , Vero Cells , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/genetics , Viral Fusion Proteins/metabolism
17.
J Virol ; 86(6): 3003-13, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22238302

ABSTRACT

While work with viral fusion proteins has demonstrated that the transmembrane domain (TMD) can affect protein folding, stability, and membrane fusion promotion, the mechanism(s) remains poorly understood. TMDs could play a role in fusion promotion through direct TMD-TMD interactions, and we have recently shown that isolated TMDs from three paramyxovirus fusion (F) proteins interact as trimers using sedimentation equilibrium (SE) analysis (E. C. Smith, et al., submitted for publication). Immediately N-terminal to the TMD is heptad repeat B (HRB), which plays critical roles in fusion. Interestingly, addition of HRB decreased the stability of the trimeric TMD-TMD interactions. This result, combined with previous findings that HRB forms a trimeric coiled coil in the prefusion form of the whole protein though HRB peptides fail to stably associate in isolation, suggests that the trimeric TMD-TMD interactions work in concert with elements in the F ectodomain head to stabilize a weak HRB interaction. Thus, changes in TMD-TMD interactions could be important in regulating F triggering and refolding. Alanine insertions between the TMD and HRB demonstrated that spacing between these two regions is important for protein stability while not affecting TMD-TMD interactions. Additional mutagenesis of the C-terminal end of the TMD suggests that ß-branched residues within the TMD play a role in membrane fusion, potentially through modulation of TMD-TMD interactions. Our results support a model whereby the C-terminal end of the Hendra virus F TMD is an important regulator of TMD-TMD interactions and show that these interactions help hold HRB in place prior to the triggering of membrane fusion.


Subject(s)
Hendra Virus/metabolism , Henipavirus Infections/virology , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/metabolism , Amino Acid Sequence , Cell Line , Hendra Virus/chemistry , Hendra Virus/genetics , Humans , Molecular Sequence Data , Protein Folding , Protein Stability , Protein Structure, Tertiary , Sequence Alignment , Viral Fusion Proteins/genetics
18.
J Mol Biol ; 415(2): 307-17, 2012 Jan 13.
Article in English | MEDLINE | ID: mdl-22100452

ABSTRACT

The highly conserved phosphatase calcineurin (CaN) plays vital roles in numerous processes including T-cell activation, development and function of the central nervous system, and cardiac growth. It is activated by the calcium sensor calmodulin (CaM). CaM binds to a regulatory domain (RD) within CaN, causing a conformational change that displaces an autoinhibitory domain (AID) from the active site, resulting in activation of the phosphatase. This is the same general mechanism by which CaM activates CaM-dependent protein kinases. Previously published data have hinted that the RD of CaN is intrinsically disordered. In this work, we demonstrate that the RD is unstructured and that it folds upon binding CaM, ousting the AID from the catalytic site. The RD is 95 residues long, with the AID attached to its C-terminal end and the 24-residue CaM binding region toward the N-terminal end. This is unlike the CaM-dependent protein kinases that have CaM binding sites and AIDs immediately adjacent in sequence. Our data demonstrate that not only does the CaM binding region folds but also an ∼25- to 30-residue region between it and the AID folds, resulting in over half of the RD adopting α-helical structure. This appears to be the first observation of CaM inducing folding of this scale outside of its binding site on a target protein.


Subject(s)
Calcineurin/chemistry , Calcineurin/metabolism , Calmodulin/chemistry , Calmodulin/metabolism , Amino Acid Sequence , Circular Dichroism , Humans , Models, Biological , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Conformation , Protein Folding , Protein Structure, Tertiary
19.
Nat Struct Mol Biol ; 16(4): 380-9, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19270701

ABSTRACT

Simple polyglutamine (polyQ) peptides aggregate in vitro via a nucleated growth pathway directly yielding amyloid-like aggregates. We show here that the 17-amino-acid flanking sequence (HTT(NT)) N-terminal to the polyQ in the toxic huntingtin exon 1 fragment imparts onto this peptide a complex alternative aggregation mechanism. In isolation, the HTT(NT) peptide is a compact coil that resists aggregation. When polyQ is fused to this sequence, it induces in HTT(NT), in a repeat-length dependent fashion, a more extended conformation that greatly enhances its aggregation into globular oligomers with HTT(NT) cores and exposed polyQ. In a second step, a new, amyloid-like aggregate is formed with a core composed of both HTT(NT) and polyQ. The results indicate unprecedented complexity in how primary sequence controls aggregation within a substantially disordered peptide and have implications for the molecular mechanism of Huntington's disease.


Subject(s)
Nerve Tissue Proteins/metabolism , Nuclear Proteins/metabolism , Peptides/metabolism , Protein Multimerization , Circular Dichroism , Humans , Huntingtin Protein , Kinetics , Macromolecular Substances/metabolism , Magnetic Resonance Spectroscopy , Microscopy, Electron, Transmission , Models, Biological , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/ultrastructure , Nuclear Proteins/chemistry , Nuclear Proteins/ultrastructure , Peptides/chemical synthesis , Protein Binding , Protein Conformation
20.
Biochemistry ; 47(10): 3216-24, 2008 Mar 11.
Article in English | MEDLINE | ID: mdl-18266321

ABSTRACT

Models of protein folding often hypothesize that the first step is local secondary structure formation. The assumption is that unfolded polypeptide chains possess an intrinsic propensity to form these local secondary structures. On the basis of this idea, it is tempting to model the local conformational properties of unfolded proteins using well-established residue secondary structure propensities, in particular, alpha-helix forming propensities. We have used spectroscopic methods to investigate the conformational behavior of a host-guest series of peptides designed to model unfolded alpha-helices. A suitable peptide model for unfolded alpha-helices was determined from studies of the length dependence of the conformational properties of alanine-based peptides. The chosen host peptide possessed a small, detectable, alpha-helix content. Substituting various representative guest residues into the central position of the host peptide at times changed the conformational behavior dramatically, and often in ways that could not be predicted from known alpha-helix forming propensities. The data presented can be used to rationalize some of these propensities. However, it is clear that secondary structure propensities cannot be used to predict the local conformational properties of unfolded proteins.


Subject(s)
Algorithms , Peptides/chemistry , Circular Dichroism , Phosphates/chemistry , Protein Folding , Protein Structure, Secondary , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL