Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Biomolecules ; 14(7)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39062462

ABSTRACT

In order to understand the coordinated proteome changes associated with differentiation of a cultured cell pluripotency model, protein expression changes induced by treatment of NT2 embryonal carcinoma cells with retinoic acid were monitored by mass spectrometry. The relative levels of over 5000 proteins were mapped across distinct cell fractions. Analysis of the chromatin fraction revealed major abundance changes among chromatin proteins and epigenetic pathways between the pluripotent and differentiated states. Protein complexes associated with epigenetic regulation of gene expression, chromatin remodelling (e.g., SWI/SNF, NuRD) and histone-modifying enzymes (e.g., Polycomb, MLL) were found to be extensively regulated. We therefore investigated histone modifications before and after differentiation, observing changes in the global levels of lysine acetylation and methylation across the four canonical histone protein families, as well as among variant histones. We identified the set of proteins with affinity to peptides housing the histone marks H3K4me3 and H3K27me3, and found increased levels of chromatin-associated histone H3 tail trimming following differentiation that correlated with increased expression levels of cathepsin proteases. We further found that inhibition of cathepsins B and D reduces histone H3 clipping. Overall, the work reveals a global reorganization of the cell proteome congruent with differentiation, highlighting the key role of multiple epigenetic pathways, and demonstrating a direct link between cathepsin B and D activity and histone modification.


Subject(s)
Cell Differentiation , Chromatin , Histones , Proteomics , Histones/metabolism , Chromatin/metabolism , Chromatin/genetics , Proteomics/methods , Humans , Cell Line, Tumor , Epigenesis, Genetic , Chromatin Assembly and Disassembly , Tretinoin/pharmacology , Proteome/metabolism , Methylation , Acetylation
2.
Curr Protoc ; 4(7): e1096, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38984433

ABSTRACT

With recent advances in the reprogramming of somatic cells into induced Pluripotent Stem Cells (iPSCs), gene editing technologies, and protocols for the directed differentiation of stem cells into heterogeneous tissues, iPSC-derived kidney organoids have emerged as a useful means to study processes of renal development and disease. Considerable advances guided by knowledge of fundamental renal developmental signaling pathways have been made with the use of exogenous morphogens to generate more robust kidney-like tissues in vitro. However, both biochemical and biophysical microenvironmental cues are major influences on tissue development and self-organization. In the context of engineering the biophysical aspects of the microenvironment, the use of hydrogel extracellular scaffolds for organoid studies has been gaining interest. Two families of hydrogels have recently been the subject of significant attention: self-assembling peptide hydrogels (SAPHs), which are fully synthetic and chemically defined, and gelatin methacryloyl (GelMA) hydrogels, which are semi-synthetic. Both can be used as support matrices for growing kidney organoids. Based on our recently published work, we highlight methods describing the generation of human iPSC (hiPSC)-derived kidney organoids and their maturation within SAPHs and GelMA hydrogels. We also detail protocols required for the characterization of such organoids using immunofluorescence imaging. Together, these protocols should enable the user to grow hiPSC-derived kidney organoids within hydrogels of this kind and evaluate the effects that the biophysical microenvironment provided by the hydrogels has on kidney organoid maturation. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Directed differentiation of human induced pluripotent stem cells (hiPSCs) into kidney organoids and maturation within mechanically tunable self-assembling peptide hydrogels (SAPHs) Alternate Protocol: Encapsulation of day 9 nephron progenitor aggregates in gelatin methacryloyl (GelMA) hydrogels. Support Protocol 1: Human induced pluripotent stem cell (hiPSC) culture. Support Protocol 2: Organoid fixation with paraformaldehyde (PFA) Basic Protocol 2: Whole-mount immunofluorescence imaging of kidney organoids. Basic Protocol 3: Immunofluorescence of organoid cryosections.


Subject(s)
Hydrogels , Induced Pluripotent Stem Cells , Kidney , Organoids , Induced Pluripotent Stem Cells/cytology , Organoids/cytology , Hydrogels/chemistry , Humans , Kidney/cytology , Cell Culture Techniques/methods , Cell Differentiation
3.
PLoS One ; 18(12): e0295370, 2023.
Article in English | MEDLINE | ID: mdl-38096183

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0078428.].

4.
Bioact Mater ; 21: 142-156, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36093324

ABSTRACT

Human induced pluripotent stem cell (hiPSC)-derived kidney organoids have prospective applications ranging from basic disease modelling to personalised medicine. However, there remains a necessity to refine the biophysical and biochemical parameters that govern kidney organoid formation. Differentiation within fully-controllable and physiologically relevant 3D growth environments will be critical to improving organoid reproducibility and maturation. Here, we matured hiPSC-derived kidney organoids within fully synthetic self-assembling peptide hydrogels (SAPHs) of variable stiffness (storage modulus, G'). The resulting organoids contained complex structures comparable to those differentiated within the animal-derived matrix, Matrigel. Single-cell RNA sequencing (scRNA-seq) was then used to compare organoids matured within SAPHs to those grown within Matrigel or at the air-liquid interface. A total of 13,179 cells were analysed, revealing 14 distinct clusters. Organoid compositional analysis revealed a larger proportion of nephron cell types within Transwell-derived organoids, while SAPH-derived organoids were enriched for stromal-associated cell populations. Notably, differentiation within a higher G' SAPH generated podocytes with more mature gene expression profiles. Additionally, maturation within a 3D microenvironment significantly reduced the derivation of off-target cell types, which are a known limitation of current kidney organoid protocols. This work demonstrates the utility of synthetic peptide-based hydrogels with a defined stiffness, as a minimally complex microenvironment for the selected differentiation of kidney organoids.

5.
Commun Biol ; 5(1): 1301, 2022 11 27.
Article in English | MEDLINE | ID: mdl-36435939

ABSTRACT

TGFß1 plays a regulatory role in the determination of renal cell fate and the progression of renal fibrosis. Here we show an association between SMAD3 and the histone methyltransferase, EZH2, during cell differentiation; ChIP-seq revealed that SMAD3 and EZH2 co-occupy the genome in iPSCs and in iPSC-derived nephron progenitors. Through integration of single cell gene expression and epigenome profiling, we identified de novo ACTA2+ve/POSTN+ve myofibroblasts in kidney organoids treated with TGFß1, characterised by increased SMAD3-dependent cis chromatin accessibility and gene expression associated with fibroblast activation. We have identified fibrosis-associated regulons characterised by enrichment of SMAD3, AP1, the ETS family of transcription factors, and NUAK1, CREB3L1, and RARG, corresponding to enriched motifs at accessible loci identified by scATACseq. Treatment with the EZH2 specific inhibitor GSK343, blocked SMAD3-dependent cis co-accessibility and inhibited myofibroblast activation. This mechanism, through which TGFß signals directly to chromatin, represents a critical determinant of fibrotic, differentiated states.


Subject(s)
Chromatin , Induced Pluripotent Stem Cells , Humans , Chromatin/genetics , Organoids , Kidney , Transforming Growth Factor beta/pharmacology , Fibrosis , Protein Kinases , Repressor Proteins
6.
Acta Biomater ; 152: 393-405, 2022 10 15.
Article in English | MEDLINE | ID: mdl-36007780

ABSTRACT

Multicore magnetic iron oxide nanoparticles, nanoflowers (NFs), have potential biomedical applications as efficient mediators for AC-magnetic field hyperthermia and as contrast agents for magnetic resonance imaging due to their strong magnetic responses arising from complex internal magnetic ordering. To realise these applications amenable surface chemistry must be engineered that maintain particle dispersion. Here a catechol-derived grafting approach is described to strongly bind polyethylene glycol (PEG) to NFs and provide stable hydrogen-bonded hydrated layers that ensure good long-term colloidal stability in buffers and media even at clinical MRI field strength and high concentration. The approach enables the first comprehensive study into the MRI (relaxivity) and hyperthermic (SAR) efficiencies of fully dispersed NFs. The predominant role of internal magnetisation dynamics in providing high relaxivity and SAR is confirmed, and it is shown that these properties are unaffected by PEG molecular weight or corona formation in biological environments. This result is in contrast to traditional single core nanoparticles which have significantly reduced SAR and relaxivity upon PEGylation and on corona formation, attributed to reduced Brownian contributions and weaker NP solvent interactions. The PEGylated NF suspensions described here exhibit usable blood circulation times and promising retention of relaxivity in-vivo due to the strongly anchored PEG layer. This approach to biomaterials design addresses the challenge of maintaining magnetic efficiency of magnetic nanoparticles in-vivo for applications as theragnostic agents. STATEMENT OF SIGNIFICANCE: Application of multicore magnetic iron-oxide nanoflowers (NFs) as efficient mediators for AC-field hyperthermia and as contrast agents for MR imaging has been limited by lack of colloidal stability in complex media and biosystems. The optimized materials design presented is shown to reproducibly provide PEG grafted NF suspensions of exceptional colloidal stability in buffers and complex media, with significant hyperthermic and MRI utility which is unaffected by PEG length, anchoring group or bio-molecular adsorption. Deposition in the selected pancreatic tumour model mirrors liposomal formulations providing a quantifiable probe of tissue-level liposome deposition and relaxivity is retained in the tumour microenvironment. Hence the biomaterials design addresses the longstanding challenges of maintaining the in vivo magnetic efficiency of nanoparticles as theragnostic agents.


Subject(s)
Contrast Media , Hyperthermia, Induced , Biocompatible Materials , Catechols , Contrast Media/chemistry , Contrast Media/pharmacology , Ferric Compounds , Hydrogen , Iron , Liposomes , Magnetic Resonance Imaging/methods , Oxides/chemistry , Polyethylene Glycols/chemistry , Solvents , Suspensions
7.
Front Neurosci ; 15: 784987, 2021.
Article in English | MEDLINE | ID: mdl-34867178

ABSTRACT

Optic atrophy (OA) with autosomal inheritance is a form of optic neuropathy characterized by the progressive and irreversible loss of vision. In some cases, this is accompanied by additional, typically neurological, extra-ocular symptoms. Underlying the loss of vision is the specific degeneration of the retinal ganglion cells (RGCs) which form the optic nerve. Whilst autosomal OA is genetically heterogenous, all currently identified causative genes appear to be associated with mitochondrial organization and function. However, it is unclear why RGCs are particularly vulnerable to mitochondrial aberration. Despite the relatively high prevalence of this disorder, there are currently no approved treatments. Combined with the lack of knowledge concerning the mechanisms through which aberrant mitochondrial function leads to RGC death, there remains a clear need for further research to identify the underlying mechanisms and develop treatments for this condition. This review summarizes the genes known to be causative of autosomal OA and the mitochondrial dysfunction caused by pathogenic mutations. Furthermore, we discuss the suitability of available in vivo models for autosomal OA with regards to both treatment development and furthering the understanding of autosomal OA pathology.

8.
Small ; 17(5): e2004452, 2021 02.
Article in English | MEDLINE | ID: mdl-33369876

ABSTRACT

Multifunctional nanocomposites that exhibit well-defined physical properties and encode spatiotemporally controlled responses are emerging as components for advanced responsive systems, for example, in soft robotics or drug delivery. Here an example of such a system, based on simple magnetic hydrogels composed of iron oxide magnetic nanoflowers and Pluronic F127 that generates heat upon alternating magnetic field irradiation is described. Rules for heat-induction in bulk hydrogels and the heat-dependence on particle concentration, gel volume, and gel exposed surface area are established, and the dependence on external environmental conditions in "closed" as compared to "open" (cell culture) system, with controllable heat jumps, of ∆T 0-12°C, achieved within ≤10 min and maintained described. Furthermore the use of extrusion-based 3D printing for manipulating the spatial distribution of heat in well-defined printed features with spatial resolution <150 µm, sufficiently fine to be of relevance to tissue engineering, is presented. Finally, localized heat induction in printed magnetic hydrogels is demonstrated through spatiotemporally-controlled release of molecules (in this case the dye methylene blue). The study establishes hitherto unobserved control over combined spatial and temporal induction of heat, the applications of which in developing responsive scaffold remodeling and cargo release for applications in regenerative medicine are discussed.


Subject(s)
Hydrogels , Nanocomposites , Hot Temperature , Printing, Three-Dimensional , Tissue Engineering
9.
FASEB J ; 33(5): 6667-6681, 2019 05.
Article in English | MEDLINE | ID: mdl-30779601

ABSTRACT

Cell differentiation is directed by extracellular cues and intrinsic epigenetic modifications, which control chromatin organization and transcriptional activation. Central to this process is PRC2, which modulates the di- and trimethylation of lysine 27 on histone 3; however, little is known concerning the direction of PRC2 to specific loci. Here, we have investigated the physical interactome of EZH2, the enzymatic core of PRC2, during retinoic acid-mediated differentiation of neuroepithelial, pluripotent NT2 cells and the dedifferentiation of neuroretinal epithelial ARPE19 cells in response to TGF-ß. We identified Smad3 as an EZH2 interactor in both contexts. Co-occupation of the CDH1 promoter by Smad3 and EZH2 and the cooperative, functional nature of the interaction were established. We propose that the interaction between Smad3 and EZH2 targets the core polycomb assembly to defined regions of the genome to regulate transcriptional repression and forms a molecular switch that controls promoter access through epigenetic mechanisms leading to gene silencing.-Andrews, D., Oliviero, G., De Chiara, L., Watson, A., Rochford, E., Wynne, K., Kennedy, C., Clerkin, S., Doyle, B., Godson, C., Connell, P., O'Brien, C., Cagney, G., Crean, J. Unravelling the transcriptional responses of TGF-ß: Smad3 and EZH2 constitute a regulatory switch that controls neuroretinal epithelial cell fate specification.


Subject(s)
Cell Differentiation , Enhancer of Zeste Homolog 2 Protein/biosynthesis , Epithelial Cells/metabolism , Gene Silencing , Retinal Pigment Epithelium/metabolism , Smad3 Protein/biosynthesis , Transcription, Genetic , Transforming Growth Factor beta/biosynthesis , Cell Line , Enhancer of Zeste Homolog 2 Protein/genetics , Humans , Smad3 Protein/genetics , Transforming Growth Factor beta/genetics , Tretinoin/pharmacology
11.
Mol Cell Proteomics ; 15(11): 3450-3460, 2016 11.
Article in English | MEDLINE | ID: mdl-27634302

ABSTRACT

Polycomb proteins assemble to form complexes with important roles in epigenetic regulation. The Polycomb Repressive Complex 2 (PRC2) modulates the di- and tri-methylation of lysine 27 on histone H3, each of which are associated with gene repression. Although three subunits, EZH1/2, SUZ12, and EED, form the catalytic core of PRC2, a wider group of proteins associate with low stoichiometry. This raises the question of whether dynamic variation of the PRC2 interactome results in alternative forms of the complex during differentiation. Here we compared the physical interactions of PRC2 in undifferentiated and differentiated states of NTERA2 pluripotent embryonic carcinoma cells. Label-free quantitative proteomics was used to assess endogenous immunoprecipitation of the EZH2 and SUZ12 subunits of PRC2. A high stringency data set reflecting the endogenous state of PRC2 was produced that included all previously reported core and associated PRC2 components, and several novel interacting proteins. Comparison of the interactomes obtained in undifferentiated and differentiated cells revealed candidate proteins that were enriched in complexes isolated from one of the two states. For example, SALL4 and ZNF281 associate with PRC2 in pluripotent cells, whereas PCL1 and SMAD3 preferentially associate with PRC2 in differentiating cells. Analysis of the mRNA and protein levels of these factors revealed that their association with PRC2 correlated with their cell state-specific expression. Taken together, we propose that dynamic changes to the PRC2 interactome during differentiation may contribute to directing its activity during cell fate transitions.


Subject(s)
Embryonal Carcinoma Stem Cells/cytology , Pluripotent Stem Cells/cytology , Polycomb Repressive Complex 2/metabolism , Proteomics/methods , Cell Differentiation , Cell Line, Tumor , Embryonal Carcinoma Stem Cells/metabolism , Enhancer of Zeste Homolog 2 Protein/metabolism , Epigenesis, Genetic , Histones/metabolism , Humans , Neoplasm Proteins , Pluripotent Stem Cells/metabolism , Protein Interaction Maps , Transcription Factors
12.
Am J Physiol Renal Physiol ; 311(1): F35-45, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27122540

ABSTRACT

Diabetic nephropathy is the most common microvascular complication of diabetes mellitus, manifesting as mesangial expansion, glomerular basement membrane thickening, glomerular sclerosis, and progressive tubulointerstitial fibrosis leading to end-stage renal disease. Here we describe the functional characterization of Wnt6, whose expression is progressively lost in diabetic nephropathy and animal models of acute tubular injury and renal fibrosis. We have shown prominent Wnt6 and frizzled 7 (FzD7) expression in the mesonephros of the developing mouse kidney, suggesting a role for Wnt6 in epithelialization. Importantly, TCF/Lef reporter activity is also prominent in the mesonephros. Analysis of Wnt family members in human renal biopsies identified differential expression of Wnt6, correlating with severity of the disease. In animal models of tubular injury and fibrosis, loss of Wnt6 was evident. Wnt6 signals through the canonical pathway in renal epithelial cells as evidenced by increased phosphorylation of GSK3ß (Ser9), nuclear accumulation of ß-catenin and increased TCF/Lef transcriptional activity. FzD7 was identified as a putative receptor of Wnt6. In vitro Wnt6 expression leads to de novo tubulogenesis in renal epithelial cells grown in three-dimensional culture. Importantly, Wnt6 rescued epithelial cell dedifferentiation in response to transforming growth factor-ß (TGF-ß); Wnt6 reversed TGF-ß-mediated increases in vimentin and loss of epithelial phenotype. Wnt6 inhibited TGF-ß-mediated p65-NF-κB nuclear translocation, highlighting cross talk between the two pathways. The critical role of NF-κB in the regulation of vimentin expression was confirmed in both p65(-/-) and IKKα/ß(-/-) embryonic fibroblasts. We propose that Wnt6 is involved in epithelialization and loss of Wnt6 expression contributes to the pathogenesis of renal fibrosis.


Subject(s)
Cell Differentiation/genetics , Kidney Diseases/genetics , Kidney Diseases/pathology , Kidney/pathology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/physiology , Wnt Proteins/genetics , Wnt Proteins/physiology , Animals , Epithelial Cells/pathology , Female , Fibrosis , Frizzled Receptors , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , I-kappa B Proteins/genetics , Kidney/embryology , Kidney Diseases/chemically induced , Kidney Tubules/growth & development , Mice , Mice, Knockout , Phosphorylation , Pregnancy , Rats , Rats, Sprague-Dawley , Receptors, G-Protein-Coupled/genetics , Signal Transduction/genetics , Transcription Factor RelA/genetics , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Vimentin/biosynthesis
13.
J Clin Med ; 5(1)2016 Jan 12.
Article in English | MEDLINE | ID: mdl-26771648

ABSTRACT

Notwithstanding controversies over the role of epithelial to mesenchymal transition in the pathogenesis of renal disease, the last decade has witnessed a revolution in our understanding of the regulation of renal cell plasticity. Significant parallels undoubtedly exist between ontogenic processes and the initiation and propagation of damage in the diseased kidney as evidenced by the reactivation of developmental programmes of gene expression, in particular with respect to TGFß superfamily signaling. Indeed, multiple signaling pathways converge on a complex transcriptional regulatory nexus that additionally involves epigenetic activator and repressor mechanisms and microRNA regulatory networks that control renal cell plasticity. It is becoming increasingly apparent that differentiated cells can acquire an undifferentiated state akin to "stemness" which is leading us towards new models of complex cell behaviors and interactions. Here we discuss the latest findings that delineate new and novel interactions between this transcriptional regulatory network and highlight a hitherto poorly recognized role for the Polycomb Repressive Complex (PRC2) in the regulation of renal cell plasticity. A comprehensive understanding of how external stimuli interact with the epigenetic control of gene expression, in normal and diseased contexts, establishes a new therapeutic paradigm to promote the resolution of renal injury and regression of fibrosis.

14.
J Diabetes Res ; 2016: 7684038, 2016.
Article in English | MEDLINE | ID: mdl-26697505

ABSTRACT

OBJECTIVE: WNT/ß-catenin pathway members have been implicated in interstitial fibrosis and glomerular sclerosis disease processes characteristic of diabetic nephropathy (DN), processes partly controlled by transcription factors (TFs) that bind to gene promoter regions attenuating regulation. We sought to identify predicted cis-acting transcription factor binding sites (TFBSs) overrepresented within WNT pathway members. METHODS: We assessed 62 TFBS motif frequencies from the JASPAR databases in 65 WNT pathway genes. P values were estimated on the hypergeometric distribution for each TF. Gene expression profiles of enriched motifs were examined in DN-related datasets to assess clinical significance. RESULTS: Transcription factor AP-2 alpha (TFAP2A), myeloid zinc finger 1 (MZF1), and specificity protein 1 (SP1) were significantly enriched within WNT pathway genes (P values < 6.83 × 10(-29), 1.34 × 10(-11), and 3.01 × 10(-6), resp.). MZF1 expression was significantly increased in DN in a whole kidney dataset (fold change = 1.16; 16% increase; P = 0.03). TFAP2A expression was decreased in an independent dataset (fold change = -1.02; P = 0.03). No differential expression of SP1 was detected. CONCLUSIONS: Three TFBS profiles are significantly enriched within WNT pathway genes highlighting the potential of in silico analyses for identification of pathway regulators. Modification of TF binding may possibly limit DN progression, offering potential therapeutic benefit.


Subject(s)
Diabetic Nephropathies/genetics , Gene Expression Regulation , Promoter Regions, Genetic , Transcription, Genetic , Wnt Signaling Pathway/genetics , Binding Sites , Computational Biology , Databases, Genetic , Humans
15.
PLoS One ; 8(11): e78428, 2013.
Article in English | MEDLINE | ID: mdl-24223803

ABSTRACT

MiRNAs can have pleiotropic effects by targeting multiple genes belonging to diverse signalling networks. Alternatively, miRNAs can enhance the potency of their cellular effects by targeting multiple genes within the same genetic pathway. Previously, we and others have demonstrated that miR-335 is a potent suppressor of tumour cell migration, invasion and metastasis, in part by targeting several genes involved in these cellular processes, including ROCK1, MAPK1, LRG1, SP1 and SOX4. Here, we demonstrate that direct targeting of multiple members of the formin family of actin nucleators contributes to the inhibitory effects of miR-335 in neuroblastoma cells. We demonstrate that miR-335 regulates the expression of at least five formin family members and validate three family members, FMNL3, FMN2 and DAAM2, as direct targets of miR-335. The contribution of the formin family genes to cancer progression and metastasis has recently begun to emerge and here we demonstrate for the first time the ability of FMN2 and DAAM2 to regulate tumour cell migration and invasion, using siRNA-mediated inhibition of each of these formin genes. Finally, we demonstrate that the formin genes, in particular FMNL3, are responsible for the protrusion of actin-rich filopodia structures that contribute to the enhanced migratory and invasive potential associated with reduced expression of miR-335. Thus, direct targeting of the formin family contributes to the metastasis suppressing abilities of miR-335 by providing a direct regulatory link to the actin assembly machinery of the cell. We conclude that miR-335 is a master regulator of tumour cell migration and invasion by directly targeting a plethora of genes that effectively control cell migratory processes.


Subject(s)
Gene Expression Regulation, Neoplastic , Intracellular Signaling Peptides and Proteins/genetics , MicroRNAs/genetics , Microfilament Proteins/genetics , Neurons/metabolism , Nuclear Proteins/genetics , Proteins/genetics , Actins/antagonists & inhibitors , Actins/genetics , Actins/metabolism , Base Pairing , Base Sequence , Binding Sites , Cell Line, Tumor , Cell Movement , Epigenesis, Genetic , Formins , Humans , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/metabolism , MicroRNAs/metabolism , Microfilament Proteins/antagonists & inhibitors , Microfilament Proteins/metabolism , Molecular Sequence Data , Neurons/pathology , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/metabolism , Proteins/antagonists & inhibitors , Proteins/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , rho GTP-Binding Proteins
16.
Invest Ophthalmol Vis Sci ; 54(13): 7836-48, 2013 Dec 02.
Article in English | MEDLINE | ID: mdl-24204045

ABSTRACT

PURPOSE: We have previously demonstrated elevated levels of connective tissue growth factor (CTGF/CCN2) in the aqueous humor (AqH) of pseudoexfoliation glaucoma (PXFG) patients when compared with cataract controls. Furthermore, there is a significant trabecular meshwork (TM) and lamina cribrosa (LC) fibrotic phenotype associated with glaucoma, possibly driven by CTGF. The purpose of this study was to investigate the potential of anti-CTGF immunotherapy in glaucoma. METHODS: Primary TM and LC cells were cultured from human donors with (GTM/GLC) and without (NTM/NLC) primary open angle glaucoma (POAG). Aqueous humor samples from PXFG, POAG, and control cataract patients were applied to N/GTM and N/GLC cells in the presence or absence of a therapeutic, humanized monoclonal anti-CTGF antibody FG-3019 (10 µg/mL). Hydrogen peroxide (H2O2) was also used as a stimulus. Expression of fibrotic genes (fibronectin-1, fibrillin-1, CTGF, collagen type I α1, and α-smooth muscle actin) was assessed by q-PCR. Protein expression of collagen 1A1 and α-smooth muscle actin was examined in N/G TM cells by SDS-PAGE. The modulatory effect of FG-3019 (10 µg/mL) and IgG (10 µg/mL) were also assessed. RESULTS: Treatment of cells with AqH from PXFG and POAG patients and H2O2 induced a significant (P < 0.05) increase in expression of profibrotic genes, which was significantly reduced by pretreatment with FG-3019 (P < 0.05). FG-3019 also reduced expression of α-smooth muscle actin and collagen 1A1 protein expression in N/GTM cells. CONCLUSIONS: FG-3019 is effective in blocking extracellular matrix production in TM and LC cells, thus supporting a role for the use of anti-CTGF immunotherapy in the treatment of glaucoma.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Connective Tissue Growth Factor/antagonists & inhibitors , Extracellular Matrix/metabolism , Glaucoma, Open-Angle/drug therapy , Trabecular Meshwork/metabolism , Aged , Aged, 80 and over , Antibodies, Monoclonal, Humanized , Blotting, Western , Cells, Cultured , Connective Tissue Growth Factor/immunology , Female , Glaucoma, Open-Angle/metabolism , Glaucoma, Open-Angle/pathology , Humans , Male , Trabecular Meshwork/drug effects , Trabecular Meshwork/pathology
17.
BMC Genomics ; 14: 525, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23902294

ABSTRACT

BACKGROUND: CCN2/CTGF is an established effector of TGFß driven responses in diabetic nephropathy. We have identified an interaction between CCN2 and TGFß leading to altered phenotypic differentiation and inhibited cellular migration. Here we determine the gene expression profile associated with this phenotype and define a transcriptional basis for differential actin related gene expression and cytoskeletal function. RESULTS: From a panel of genes regulated by TGFß and CCN2, we used co-inertia analysis to identify and then experimentally verify a subset of transcription factors, E2F1 and CREB, that regulate an expression fingerprint implicated in altered actin dynamics and cell hypertrophy. Importantly, actin related genes containing E2F1 and CREB binding sites, stratified by expression profile within the dataset. Further analysis of actin and cytoskeletal related genes from patients with diabetic nephropathy suggests recapitulation of this programme during the development of renal disease. The Rho family member Cdc42 was also found uniquely to be activated in cells treated with TGFß and CCN2; Cdc42 interacting genes were differentially regulated in diabetic nephropathy. CONCLUSIONS: TGFß and CCN2 attenuate CREB and augment E2F1 transcriptional activation with the likely effect of altering actin cytoskeletal and cell growth/hypertrophic gene activity with implications for cell dysfunction in diabetic kidney disease. The cytoskeletal regulator Cdc42 may play a role in this signalling response.


Subject(s)
Actins/metabolism , Connective Tissue Growth Factor/pharmacology , Cyclic AMP Response Element-Binding Protein/metabolism , E2F1 Transcription Factor/metabolism , Gene Expression Regulation/drug effects , Transforming Growth Factor beta/pharmacology , Binding Sites , Cell Line , Cell Movement/drug effects , Cell Movement/genetics , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Hypertrophy/genetics , Mesangial Cells/drug effects , Mesangial Cells/metabolism , Protein Binding , Protein Interaction Maps , Reproducibility of Results , Signal Transduction/drug effects , Transcriptome , cdc42 GTP-Binding Protein/metabolism
18.
BMC Nephrol ; 14: 126, 2013 Jun 18.
Article in English | MEDLINE | ID: mdl-23777469

ABSTRACT

BACKGROUND: Renal interstitial fibrosis and glomerular sclerosis are hallmarks of diabetic nephropathy (DN) and several studies have implicated members of the WNT pathways in these pathological processes. This study comprehensively examined common genetic variation within the WNT pathway for association with DN. METHODS: Genes within the WNT pathways were selected on the basis of nominal significance and consistent direction of effect in the GENIE meta-analysis dataset. Common SNPs and common haplotypes were examined within the selected WNT pathway genes in a white population with type 1 diabetes, discordant for DN (cases: n = 718; controls: n = 749). SNPs were genotyped using Sequenom or Taqman assays. Association analyses were performed using PLINK, to compare allele and haplotype frequencies in cases and controls. Correction for multiple testing was performed by either permutation testing or using false discovery rate. RESULTS: A logistic regression model including collection centre, duration of diabetes, and average HbA1c as covariates highlighted three SNPs in GSK3B (rs17810235, rs17471, rs334543), two in DAAM1 (rs1253192, rs1252906) and one in NFAT5 (rs17297207) as being significantly (P < 0.05) associated with DN, however these SNPs did not remain significant after correction for multiple testing. Logistic regression of haplotypes, with ESRD as the outcome, and pairwise interaction analyses did not yield any significant results after correction for multiple testing. CONCLUSIONS: These results indicate that both common SNPs and common haplotypes of WNT pathway genes are not strongly associated with DN. However, this does not completely exclude these or the WNT pathways from association with DN, as unidentified rare genetic or copy number variants could still contribute towards the genetic architecture of DN.


Subject(s)
Diabetic Nephropathies/diagnosis , Diabetic Nephropathies/genetics , Genetic Association Studies/methods , Haplotypes/genetics , Wnt Signaling Pathway/genetics , Adult , Female , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics
19.
FEBS J ; 280(14): 3232-43, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23617393

ABSTRACT

Diabetic nephropathy (DN) is a progressive fibrotic condition that may lead to end-stage renal disease and kidney failure. Transforming growth factor-ß1 and bone morphogenetic protein-7 (BMP7) have been shown to induce DN-like changes in the kidney and protect the kidney from such changes, respectively. Recent data identified insulin action at the level of the nephron as a crucial factor in the development and progression of DN. Insulin requires a family of insulin receptor substrate (IRS) proteins for its physiological effects, and many reports have highlighted the role of insulin and IRS proteins in kidney physiology and disease. Here, we observed IRS2 expression predominantly in the developing and adult kidney epithelium in mouse and human. BMP7 treatment of human kidney proximal tubule epithelial cells (HK-2 cells) increases IRS2 transcription. In addition, BMP7 treatment of HK-2 cells induces an electrophoretic shift in IRS2 migration on SDS/PAGE, and increased association with phosphatidylinositol-3-kinase, probably due to increased tyrosine/serine phosphorylation. In a cohort of DN patients with a range of chronic kidney disease severity, IRS2 mRNA levels were elevated approximately ninefold, with the majority of IRS2 staining evident in the kidney tubules in DN patients. These data show that IRS2 is expressed in the kidney epithelium and may play a role in the downstream protective events triggered by BMP7 in the kidney. The specific up-regulation of IRS2 in the kidney tubules of DN patients also indicates a novel role for IRS2 as a marker and/or mediator of human DN progression.


Subject(s)
Diabetic Nephropathies/metabolism , Gene Expression , Insulin Receptor Substrate Proteins/metabolism , Kidney Tubules/metabolism , Adolescent , Adult , Animals , Base Sequence , Binding Sites , Bone Morphogenetic Protein 7/physiology , Case-Control Studies , Cell Line , Child , Epithelium/metabolism , Female , Humans , Insulin Receptor Substrate Proteins/genetics , Kidney Tubules/pathology , Male , Mice , Middle Aged , Phosphorylation , Protein Processing, Post-Translational , Signal Transduction , Smad4 Protein/genetics , Transcriptional Activation , Young Adult
20.
J Cell Sci ; 125(Pt 23): 5621-9, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-22976296

ABSTRACT

Signalling interplay between transforming growth factor-ß (TGFß) and CCN2 [also called connective tissue growth factor (CTGF)] plays a crucial role in the progression of diabetic nephropathy and has been implicated in cellular differentiation. To investigate the potential role of microRNAs (miRNAs) in the mediation of this signalling network, we performed miRNA screening in mesangial cells treated with recombinant human CCN2. Analysis revealed a cohort of 22 miRNAs differentially expressed by twofold or more, including members of the miR-302 family. Target analysis of miRNA to 3'-untranslated regions (3'-UTRs) identified TGFß receptor II (TßRII) as a potential miR-302 target. In mesangial cells, decreased TßRII expression was confirmed in response to CCN2 together with increased expression of miR-302d. TßRII was confirmed as an miR-302 target, and inhibition of miR-302d was sufficient to attenuate the effect of CCN2 on TßRII. Data from the European Renal cDNA Biopsy Bank revealed decreased TßRII in diabetic patients, suggesting pathophysiological significance. In a mouse model of fibrosis (UUO), miR-302d was increased, with decreased TßRII expression and aberrant signalling, suggesting relevance in chronic fibrosis. miR-302d decreased TGFß-induced epithelial mesenchymal transition (EMT) in renal HKC8 epithelial cells and attenuated TGFß-induced mesangial production of fibronectin and thrombospondin. In summary, we demonstrate a new mode of regulation of TGFß by CCN2, and conclude that the miR-302 family has a role in regulating growth factor signalling pathways, with implications for nephropathic cell fate transitions.


Subject(s)
Connective Tissue Growth Factor/pharmacology , MicroRNAs/genetics , Protein Serine-Threonine Kinases/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Animals , Blotting, Western , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Fluorescent Antibody Technique , Humans , Male , Mesangial Cells/drug effects , Mesangial Cells/metabolism , Mice , Mice, Inbred C57BL , Receptor, Transforming Growth Factor-beta Type II , Reverse Transcriptase Polymerase Chain Reaction , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL