Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
HLA ; 103(3): e15441, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38507216

ABSTRACT

The current practice of HLA genotyping in deceased donors poses challenges due to limited resolution within time constraints. Nevertheless, the assessment of compatibility between anti-HLA sensitized recipients and mismatched donors remains a critical medical need, particularly when dealing with allele-specific (second field genotyping level) donor-specific antibodies. In this study, we present a customized protocol based on the NanoTYPE® HLA typing kit, employing the MinION® sequencer, which enables rapid HLA typing of deceased donors within a short timeframe of 3.75 h on average at a three-field resolution with almost no residual ambiguities. Through a prospective real-time analysis of HLA typing in 18 donors, we demonstrated the efficacy and precision of our nanopore-based method in comparison to the conventional approach and without delaying organ allocation. Indeed, this duration was consistent with the deceased donor organ donation procedure leading to organ allocation via the French Biomedicine Agency. The improved resolution achieved with our protocol enhances the security of organ allocation, particularly benefiting highly sensitized recipients who often present intricate HLA antibody profiles. By overcoming technical challenges and providing comprehensive genotyping data, this approach holds the potential to significantly impact deceased donor HLA genotyping, thereby facilitating optimal organ allocation strategies.


Subject(s)
Nanopore Sequencing , Humans , Prospective Studies , HLA Antigens/genetics , Alleles , Tissue Donors , Histocompatibility Testing/methods
2.
Brain Behav Immun ; 98: 101-109, 2021 11.
Article in English | MEDLINE | ID: mdl-34403736

ABSTRACT

The etiology of myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is unknown, but involvement of the immune system is one of the proposed underlying mechanisms. Human leukocyte antigen (HLA) associations are hallmarks of immune-mediated and autoimmune diseases. We have previously performed high resolution HLA genotyping and detected associations between ME/CFS and certain HLA class I and class II alleles. However, the HLA complex harbors numerous genes of immunological importance, and there is extensive and complex linkage disequilibrium across the region. In the current study, we aimed to fine map the association signals in the HLA complex by genotyping five additional classical HLA loci and 5,342 SNPs in 427 Norwegian ME/CFS patients, diagnosed according to the Canadian Consensus Criteria, and 480 healthy Norwegian controls. SNP association analysis revealed two distinct and independent association signals (p ≤ 0.001) tagged by rs4711249 in the HLA class I region and rs9275582 in the HLA class II region. Furthermore, the primary association signal in the HLA class II region was located within the HLA-DQ gene region, most likely due to HLA-DQB1, particularly the amino acid position 57 (aspartic acid/alanine) in the peptide binding groove, or an intergenic SNP upstream of HLA-DQB1. In the HLA class I region, the putative causal locus might map outside the classical HLA genes as the association signal spans several genes (DDR1, GTF2H4, VARS2, SFTA2 and DPCR1) with expression levels influenced by the ME/CFS associated SNP genotype. Taken together, our results implicate the involvement of the MHC, and in particular the HLA-DQB1 gene, in ME/CFS. These findings should be replicated in larger cohorts, particularly to verify the putative involvement of HLA-DQB1, a gene important for antigen-presentation to T cells and known to harbor alleles providing the largest risk for well-established autoimmune diseases.


Subject(s)
Fatigue Syndrome, Chronic , Alleles , Canada , Fatigue Syndrome, Chronic/genetics , HLA Antigens , HLA-DQ Antigens/genetics , Humans , Major Histocompatibility Complex , Valine-tRNA Ligase
3.
Front Immunol ; 12: 644838, 2021.
Article in English | MEDLINE | ID: mdl-34211458

ABSTRACT

Multiple sclerosis (MS) susceptibility shows strong genetic associations with HLA alleles and haplotypes. We genotyped 11 HLA genes in 477 non-Hispanic European MS patients and their 954 unaffected parents using a validated next-generation sequencing (NGS) methodology. HLA haplotypes were assigned unequivocally by tracing HLA allele transmissions. We explored HLA haplotype/allele associations with MS using the genotypic transmission disequilibrium test (gTDT) and multiallelic TDT (mTDT). We also conducted a case-control (CC) study with all patients and 2029 healthy unrelated ethnically matched controls. We performed separate analyses of 54 extended multi-case families by reviewing transmission of haplotype blocks. The haplotype fragment including DRB5*01:01:01~DRB1*15:01:01:01 was significantly associated with predisposition (gTDT: p < 2.20e-16; mTDT: p =1.61e-07; CC: p < 2.22e-16) as reported previously. A second risk allele, DPB1*104:01 (gTDT: p = 3.69e-03; mTDT: p = 2.99e-03; CC: p = 1.00e-02), independent from the haplotype bearing DRB1*15:01 was newly identified. The allele DRB1*01:01:01 showed significant protection (gTDT: p = 8.68e-06; mTDT: p = 4.50e-03; CC: p = 1.96e-06). Two DQB1 alleles, DQB1*03:01 (gTDT: p = 2.86e-03; mTDT: p = 5.56e-02; CC: p = 4.08e-05) and DQB1*03:03 (gTDT: p = 1.17e-02; mTDT: p = 1.16e-02; CC: p = 1.21e-02), defined at two-field level also showed protective effects. The HLA class I block, A*02:01:01:01~C*03:04:01:01~B*40:01:02 (gTDT: p = 5.86e-03; mTDT: p = 3.65e-02; CC: p = 9.69e-03) and the alleles B*27:05 (gTDT: p = 6.28e-04; mTDT: p = 2.15e-03; CC: p = 1.47e-02) and B*38:01 (gTDT: p = 3.20e-03; mTDT: p = 6.14e-03; CC: p = 1.70e-02) showed moderately protective effects independently from each other and from the class II associated factors. By comparing statistical significance of 11 HLA loci and 19 haplotype segments with both untruncated and two-field allele names, we precisely mapped MS candidate alleles/haplotypes while eliminating false signals resulting from 'hitchhiking' alleles. We assessed genetic burden for the HLA allele/haplotype identified in this study. This family-based study including the highest-resolution of HLA alleles proved to be powerful and efficient for precise identification of HLA genotypes associated with both, susceptibility and protection to development of MS.


Subject(s)
Alleles , Genetic Predisposition to Disease , HLA-DP Antigens , Haplotypes , Multiple Sclerosis , Adolescent , Adult , Case-Control Studies , Child , Female , Genotyping Techniques , HLA-DP Antigens/genetics , HLA-DP Antigens/immunology , Humans , Male , Middle Aged , Multiple Sclerosis/genetics , Multiple Sclerosis/immunology
4.
Front Immunol ; 12: 667336, 2021.
Article in English | MEDLINE | ID: mdl-34163474

ABSTRACT

Genetic susceptibility to myasthenia gravis (MG) associates with specific HLA alleles and haplotypes at the class I and II regions in various populations. Previous studies have only examined alleles at a limited number of HLA loci that defined only broad serotypes or alleles defined at the protein sequence level. Consequently, genetic variants in noncoding and untranslated HLA gene segments have not been fully explored but could also be important determinants for MG. To gain further insight into the role of HLA in MG, we applied next-generation sequencing to analyze sequence variation at eleven HLA genes in early-onset (EO) and late-onset (LO) non-thymomatous MG patients positive for the acetylcholine receptor (AChR) antibodies and ethnically matched controls from Italy, Norway, and Sweden. For all three populations, alleles and haplotype blocks present on the ancestral haplotype AH8.1 were associated with risk in AChR-EOMG patients. HLA-B*08:01:01:01 was the dominant risk allele in Italians (OR = 3.28, P = 1.83E-05), Norwegians (OR = 3.52, P = 4.41E-16), and in Swedes HLA-B*08:01 was the primary risk allele (OR = 4.24, P <2.2E-16). Protective alleles and haplotype blocks were identified on the HLA-DRB7, and HLA-DRB13.1 class II haplotypes in Italians and Norwegians, whereas in Swedes HLA-DRB7 exhibited the main protective effect. For AChR-LOMG patients, the HLA-DRB15.1 haplotype and associated alleles were significantly associated with susceptibility in all groups. The HLA-DR13-HLA-DR-HLA-DQ haplotype was associated with protection in all AChR-LOMG groups. This study has confirmed and extended previous findings that the immunogenetic predisposition profiles for EOMG and LOMG are distinct. In addition, the results are consistent with a role for non-coding HLA genetic variants in the pathogenesis of MG.


Subject(s)
Alleles , HLA-B Antigens/genetics , HLA-DR Antigens/genetics , Myasthenia Gravis/genetics , Adult , Age of Onset , Female , Genetic Predisposition to Disease , Haplotypes , High-Throughput Nucleotide Sequencing , Humans , Italy , Male , Middle Aged , Myasthenia Gravis/epidemiology , Myasthenia Gravis/immunology , Norway , Sweden
5.
Hum Immunol ; 82(7): 505-522, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34030896

ABSTRACT

The primary goal of the unrelated population HLA diversity (UPHD) component of the 17th International HLA and Immunogenetics Workshop was to characterize HLA alleles at maximum allelic-resolution in worldwide populations and re-evaluate patterns of HLA diversity across populations. The UPHD project included HLA genotype and sequence data, generated by various next-generation sequencing methods, from 4,240 individuals collated from 12 different countries. Population data included well-defined large datasets from the USA and smaller samples from Europe, Australia, and Western Asia. Allele and haplotype frequencies varied across populations from distant geographical regions. HLA genetic diversity estimated at 2- and 4-field allelic resolution revealed that diversity at the majority of loci, particularly for European-descent populations, was lower at the 2-field resolution. Several common alleles with identical protein sequences differing only by intronic substitutions were found in distinct haplotypes, revealing a more detailed characterization of linkage between variants within the HLA region. The examination of coding and non-coding nucleotide variation revealed many examples in which almost complete biunivocal relations between common alleles at different loci were observed resulting in higher linkage disequilibrium. Our reference data of HLA profiles characterized at maximum resolution from many populations is useful for anthropological studies, unrelated donor searches, transplantation, and disease association studies.


Subject(s)
Alleles , Gene Frequency , Genetics, Population , HLA Antigens/genetics , Haplotypes , High-Throughput Nucleotide Sequencing , Immunogenetics , Disease Susceptibility , Genetic Association Studies , Genetics, Population/methods , Humans , Immunogenetics/methods , Transplantation Immunology
6.
J Immunol ; 205(5): 1323-1330, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32709660

ABSTRACT

Immune dysfunction plays a role in the development of Parkinson disease (PD). NK cells regulate immune functions and are modulated by killer cell immunoglobulin-like receptors (KIR). KIR are expressed on the surface of NK cells and interact with HLA class I ligands on the surface of all nucleated cells. We investigated KIR-allelic polymorphism to interrogate the role of NK cells in PD. We sequenced KIR genes from 1314 PD patients and 1978 controls using next-generation methods and identified KIR genotypes using custom bioinformatics. We examined associations of KIR with PD susceptibility and disease features, including age at disease onset and clinical symptoms. We identified two KIR3DL1 alleles encoding highly expressed inhibitory receptors associated with protection from PD clinical features in the presence of their cognate ligand: KIR3DL1*015/HLA-Bw4 from rigidity (p c = 0.02, odds ratio [OR] = 0.39, 95% confidence interval [CI] 0.23-0.69) and KIR3DL1*002/HLA-Bw4i from gait difficulties (p c = 0.05, OR = 0.62, 95% CI 0.44-0.88), as well as composite symptoms associated with more severe disease. We also developed a KIR3DL1/HLA interaction strength metric and found that weak KIR3DL1/HLA interactions were associated with rigidity (pc = 0.05, OR = 9.73, 95% CI 2.13-172.5). Highly expressed KIR3DL1 variants protect against more debilitating symptoms of PD, strongly implying a role of NK cells in PD progression and manifestation.


Subject(s)
Parkinson Disease/genetics , Polymorphism, Genetic/genetics , Receptors, KIR3DL1/genetics , Alleles , Female , Genotype , HLA-B Antigens/genetics , Humans , Killer Cells, Natural/metabolism , Ligands , Male , Middle Aged , Severity of Illness Index
7.
Hum Immunol ; 80(10): 807-822, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31345698

ABSTRACT

The human leukocyte antigen (HLA) genes are extremely polymorphic and are useful molecular markers to make inferences about human population history. However, the accuracy of the estimation of genetic diversity at HLA loci very much depends on the technology used to characterize HLA alleles; high-resolution genotyping of long-range HLA gene products improves the assessment of HLA population diversity as well as other population parameters compared to lower resolution typing methods. In this study we examined allelic and haplotype HLA diversity in a large healthy European American population sourced from the UCSF-DNA bank. A high-resolution next-generation sequencing method was applied to define non-ambiguous 3- and 4-field alleles at the HLA-A, HLA-C, HLA-B, HLA-DRB1, HLA-DRB3/4/5, HLA-DQA1, HLA-DQB1, HLA-DPA1, and HLA-DPB1 loci in samples provided by 2248 unrelated individuals. A number of population parameters were examined including balancing selection and various measurements of linkage disequilibrium were calculated. There were no detectable deviations from Hardy-Weinberg proportions at HLA-A, HLA-DRB1, HLA-DQA1 and HLA-DQB1. For the remaining loci moderate and significant deviations were detected at HLA-C, HLA-B, HLA-DRB3/4/5, HLA-DPA1 and HLA-DPB1 loci mostly from population substructures. Unique 4-field associations were observed among alleles at 2 loci and haplotypes extending large intervals that were not apparent in results obtained using testing methodologies with limited sequence coverage and phasing. The high diversity at HLA-DPA1 results from detection of intron variants of otherwise well conserved protein sequences. It may be speculated that divergence in exon sequences may be negatively selected. Our data provides a valuable reference source for future population studies that may allow for precise fine mapping of coding and non-coding sequences determining disease susceptibility and allo-immunogenicity.


Subject(s)
Gene Frequency/genetics , Genetics, Population/methods , HLA Antigens/genetics , Haplotypes/genetics , High-Throughput Nucleotide Sequencing , White People/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Alleles , Cohort Studies , Europe/ethnology , Female , Genetic Loci/genetics , Histocompatibility Testing , Humans , Linkage Disequilibrium/genetics , Male , Middle Aged , United States , White People/ethnology , Young Adult
8.
Hum Immunol ; 80(9): 703-713, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31331679

ABSTRACT

The 'Immunogenetics of Aging' project is a component introduced in the 14th International HLA and Immunogenetics Workshop (IHIW) and developed further within subsequent workshops. The aim was to determine the relevance of immunogenetic markers, focusing on HLA, cytokine genes, and some innate immunity genes, for successful aging and an increased capacity to reach the extreme limits of life-span. Within the 17th IHIW we applied Next Generation Sequencing methods to refine further HLA associations at allele level in longevity, and to extend our knowledge to additional loci such as HLA-DQA1, HLA-DPB1 and HLA-DPA1. Analysis of relatively small number of healthy elderly and young controls from four populations showed that some HLA class I and class II alleles were significantly positively associated with healthy aging. Additionally we observed statistically significant differences in HLA allele distribution when the analysis was performed separately in elderly females and males compared to sex-matched young controls. Haplotypes, probably associated with better control of viral and malignant diseases were increased in the elderly sample. These preliminary NGS data could confirm our hypotheses that survival and longevity might be associated with selection of HLA alleles and haplotypes conferring disease resistance or susceptibility. Therefore HLA alleles and haplotypes could be informative immunogenetic markers for successful ageing.


Subject(s)
Aging/genetics , Aging/immunology , Education , High-Throughput Nucleotide Sequencing , Immunogenetics/methods , Adult , Aged , Aged, 80 and over , Alleles , Biomarkers , Female , Gene Frequency/genetics , Genetic Loci , HLA Antigens/genetics , Haplotypes/genetics , Humans , Male , Polymorphism, Genetic , Population/genetics , Young Adult
9.
Hum Immunol ; 80(9): 644-660, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31256909

ABSTRACT

The 17th International HLA and Immunogenetics Workshop (IHIW) conducted a project entitled "The Study of Haplotypes in Families by NGS HLA". We investigated the HLA haplotypes of 1017 subjects in 263 nuclear families sourced from five US clinical immunogenetics laboratories, primarily as part of the evaluation of related donor candidates for hematopoietic stem cell and solid organ transplantation. The parents in these families belonged to five broad groups - African (72 parents), Asian (115), European (210), Hispanic (118) and "Other" (11). High-resolution HLA genotypes were generated for each subject using next-generation sequencing (NGS) HLA typing systems. We identified the HLA haplotypes in each family using HaplObserve, software that builds haplotypes in families by reviewing HLA allele segregation from parents to children. We calculated haplotype frequencies within each broad group, by treating the parents in each family as unrelated individuals. We also calculated standard measures of global linkage disequilibrium (LD) and conditional asymmetric LD for each ethnic group, and used untruncated and two-field allele names to investigate LD patterns. Finally we demonstrated the utility of consensus DNA sequences in identifying novel variants, confirming them using HLA allele segregation at the DNA sequence level.


Subject(s)
Alleles , HLA Antigens/genetics , Haplotypes/genetics , Nuclear Family , Base Sequence/genetics , Child , Ethnicity/genetics , Exons/genetics , Gene Frequency/genetics , High-Throughput Nucleotide Sequencing , Histocompatibility Testing , Humans , Introns/genetics , Linkage Disequilibrium/genetics , Pedigree , Software , United States , Untranslated Regions/genetics
10.
Proc Natl Acad Sci U S A ; 116(15): 7419-7424, 2019 04 09.
Article in English | MEDLINE | ID: mdl-30910980

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disease in which genetic risk has been mapped to HLA, but precise allelic associations have been difficult to infer due to limitations in genotyping methodology. Mapping PD risk at highest possible resolution, we performed sequencing of 11 HLA genes in 1,597 PD cases and 1,606 controls. We found that susceptibility to PD can be explained by a specific combination of amino acids at positions 70-74 on the HLA-DRB1 molecule. Previously identified as the primary risk factor in rheumatoid arthritis and referred to as the "shared epitope" (SE), the residues Q/R-K/R-R-A-A at positions 70-74 in combination with valine at position 11 (11-V) is highly protective in PD, while risk is attributable to the identical epitope in the absence of 11-V. Notably, these effects are modified by history of cigarette smoking, with a strong protective effect mediated by a positive history of smoking in combination with the SE and 11-V (P = 10-4; odds ratio, 0.51; 95% confidence interval, 0.36-0.72) and risk attributable to never smoking in combination with the SE without 11-V (P = 0.01; odds ratio, 1.51; 95% confidence interval, 1.08-2.12). The association of specific combinations of amino acids that participate in critical peptide-binding pockets of the HLA class II molecule implicates antigen presentation in PD pathogenesis and provides further support for genetic control of neuroinflammation in disease. The interaction of HLA-DRB1 with smoking history in disease predisposition, along with predicted patterns of peptide binding to HLA, provide a molecular model that explains the unique epidemiology of smoking in PD.


Subject(s)
Genotype , HLA-DRB1 Chains/chemistry , HLA-DRB1 Chains/genetics , Models, Molecular , Parkinson Disease/genetics , Smoking/genetics , Amino Acid Motifs , Female , Genotyping Techniques , Humans , Male , Risk Factors
11.
Hum Immunol ; 80(7): 449-460, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30844424

ABSTRACT

Extended molecular characterization of HLA genes in the IHWG reference B-lymphoblastoid cell lines (B-LCLs) was one of the major goals for the 17th International HLA and Immunogenetics Workshop (IHIW). Although reference B-LCLs have been examined extensively in previous workshops complete high-resolution typing was not completed for all the classical class I and class II HLA genes. To address this, we conducted a single-blind study where select panels of B-LCL genomic DNA samples were distributed to multiple laboratories for HLA genotyping by next-generation sequencing methods. Identical cell panels comprised of 24 and 346 samples were distributed and typed by at least four laboratories in order to derive accurate consensus HLA genotypes. Overall concordance rates calculated at both 2- and 4-field allele-level resolutions ranged from 90.4% to 100%. Concordance for the class I genes ranged from 91.7 to 100%, whereas concordance for class II genes was variable; the lowest observed at HLA-DRB3 (84.2%). At the maximum allele-resolution 78 B-LCLs were defined as homozygous for all 11 loci. We identified 11 novel exon polymorphisms in the entire cell panel. A comparison of the B-LCLs NGS HLA genotypes with the HLA genotypes catalogued in the IPD-IMGT/HLA Database Cell Repository, revealed an overall allele match at 68.4%. Typing discrepancies between the two datasets were mostly due to the lower-resolution historical typing methods resulting in incomplete HLA genotypes for some samples listed in the IPD-IMGT/HLA Database Cell Repository. Our approach of multiple-laboratory NGS HLA typing of the B-LCLs has provided accurate genotyping data. The data generated by the tremendous collaborative efforts of the 17th IHIW participants is useful for updating the current cell and sequence databases and will be a valuable resource for future studies.


Subject(s)
B-Lymphocytes/virology , HLA Antigens/genetics , Herpesvirus 4, Human/immunology , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class I/genetics , Histocompatibility Testing/methods , Alleles , Cell Line, Transformed , Cell Transformation, Viral , Data Accuracy , Exons/genetics , Genetic Loci , Genetic Variation , Genotype , Haplotypes/genetics , High-Throughput Nucleotide Sequencing/methods , Histocompatibility , Homozygote , Humans , Sequence Analysis, DNA/methods , Single-Blind Method
12.
Hum Immunol ; 80(7): 429-436, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30763600

ABSTRACT

Next-generation sequencing (NGS) at the HLA-A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRB1 and -DRB3/4/5 loci was performed on 282 healthy unrelated individuals from different major regions of Spain. High-resolution HLA genotypes defined by full sequencing of class I loci and extended coverage of class II loci were obtained to determine allele frequencies and also to estimate extended haplotype frequencies. HLA alleles were typed at the highest resolution level (4-field level, 4FL); with exception of a minor deviation in HLA-DPA1, no statistically significant deviations from expected Hardy Weinberg Equilibrium (HWE) proportions were observed for all other HLA loci. This study provides new 4FL-allele and -haplotype frequencies estimated for the first time in the Spanish population. Furthermore, our results describe extended haplotypes (including the less frequently typed HLA-DPA1 and HLA-DQA1 loci) and show distinctive haplotype associations found at 4FL-allele definition in this Spanish population study. The distinctive allelic and haplotypic diversity found at the 4FL reveals the high level of heterozygosity and specific haplotypic associations displayed that were not apparent at 2-field level (2FL). Overall, these results may contribute as a useful reference source for future population studies, for HLA-disease association studies as a healthy control group dataset and for improving donor recruitment strategies of bone marrow registries. HLA genotyping data of this Spanish population cohort was also included in the 17th International Histocompatibility and Immunogenetics Workshop (IHIW) as part of the study of HLA diversity in unrelated worldwide populations using NGS.


Subject(s)
Gene Frequency/genetics , HLA Antigens/genetics , Haplotypes/genetics , Cohort Studies , Exons/genetics , Genetic Loci , Genetic Variation , Genotype , Heterozygote , High-Throughput Nucleotide Sequencing , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class II/genetics , Histocompatibility Testing , Homozygote , Humans , Linkage Disequilibrium/genetics , Sequence Analysis, DNA , Spain
13.
Mult Scler ; 25(6): 772-782, 2019 05.
Article in English | MEDLINE | ID: mdl-29683085

ABSTRACT

BACKGROUND: The association between HLA-DRB1*15:01 with multiple sclerosis (MS) susceptibility is well established, but the contribution of the tightly associated HLA-DRB5*01:01 allele has not yet been completely ascertained. Similarly, the effects of HLA-DRB1*04:01 alleles and haplotypes, defined at the full-gene resolution level with MS risk remains to be elucidated. OBJECTIVES: To characterize the molecular architecture of class II HLA-DR15 and HLA-DR4 haplotypes associated with MS. METHODS: Next-generation sequencing was used to determine HLA-DQB1, HLA-DQA1, and HLA-DRB1/4/5 alleles in 1403 unrelated European-American patients and 1425 healthy unrelated controls. Effect sizes of HLA alleles and haplotypes on MS risk were measured by odds ratio (OR) with 95% confidence intervals. RESULTS: HLA-DRB1*15:01:01:01SG (OR = 3.20, p < 2.2E-16), HLA-DRB5*01:01:01 (OR = 2.96, p < 2.2E-16), and HLA-DRB5*01:01:01v1_STR1 (OR = 8.18, p = 4.3E-05) alleles all occurred at significantly higher frequencies in MS patients compared to controls. The most significant predis-posing haplotypes were HLA-DQB1*06:02:01~ HLA-DQA1*01:02:01:01SG~HLA-DRB1*15:01:01:01SG~HLA-DRB5*01:01:01 and HLA-DQB1*06:02:01~HLA-DQA1*01:02:01:01SG~HLA-DRB1*15:01:01:01SG~HLA-DRB5*01:01:01v1_STR1 (OR = 3.19, p < 2.2E-16; OR = 9.30, p = 9.7E-05, respectively). Analyses of the HLA-DRB1*04 cohort in the absence of HLA-DRB1*15:01 haplotypes revealed that the HLA-DQB1*03:01:01:01~HLA-DQA1*03:03:01:01~HLA-DRB1*04:01:01:01SG~HLA-DRB4*01:03:01:01 haplotype was protective (OR = 0.64, p = 0.028), whereas the HLA-DQB1*03:02:01~HLA-DQA1*03:01:01~HLA-DRB1*04:01:01:01SG~HLA-DRB4*01:03:01:01 haplotype was associated with MS susceptibility (OR = 1.66, p = 4.9E-03). CONCLUSION: HLA-DR15 haplotypes, including genomic variants of HLA-DRB5, and HLA-DR4 haplotypes affect MS risk.


Subject(s)
HLA-DRB1 Chains/genetics , Multiple Sclerosis/genetics , White People/genetics , Adult , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Sequence Analysis, DNA
14.
Hum Immunol ; 79(12): 839-847, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30240896

ABSTRACT

The development of next-generation sequencing (NGS) methods for HLA genotyping has already had an impact on the scope and precision of HLA research. In this study, allelic resolution HLA typing was obtained for 402 individuals from Cape Town, South Africa. The data were produced by high-throughput NGS sequencing as part of a study of T-cell responses to Mycobacterium tuberculosis in collaboration with the University of Cape Town and Stanford University. All samples were genotyped for 11 HLA loci, namely HLA-A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRB1, -DRB3, -DRB4, and -DRB5. NGS HLA typing of samples from Cape Town inhabitants revealed a unique cohort, including unusual haplotypes, and 22 novel alleles not previously reported in the IPD-IMGT/HLA Database. Eight novel alleles were in Class I loci and 14 were in Class II. There were 62 different alleles of HLA-A, 72 of HLA-B, and 47 of HLA-C. Alleles A∗23:17, A∗43:01, A∗29:11, A∗68:27:01, A∗01:23, B∗14:01:01, B∗15:10:01, B∗39:10:01, B∗45:07, B∗82:02:01 and C∗08:04:01 were notably more frequent in Cape Town compared to other populations reported in the literature. Class II loci had 21 different alleles of DPA1, 46 of DPB1, 27 of DQA1, 26 of DQB1, 41 of DRB1, 5 of DRB3, 4 of DRB4 and 6 of DRB5. The Cape Town cohort exhibited high degrees of HLA diversity and relatively high heterozygosity at most loci. Genetic distances between Cape Town and five other sub-Saharan African populations were also calculated and compared to European Americans.


Subject(s)
Genotyping Techniques/methods , HLA Antigens/genetics , High-Throughput Nucleotide Sequencing/methods , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class I/genetics , Adolescent , Alleles , Female , Gene Frequency , Genotype , Haplotypes , Humans , Linkage Disequilibrium , Male , South Africa
15.
Blood Adv ; 1(17): 1347-1357, 2017 Jul 25.
Article in English | MEDLINE | ID: mdl-29296777

ABSTRACT

Many patients lack a fully HLA-matched donor for hematopoietic cell transplantation (HCT), and HLA mismatch is typically associated with inferior outcomes. Total lymphoid irradiation and antithymocyte globulin (TLI-ATG) is a nonmyeloablative conditioning regimen that is protective against graft-versus-host disease (GVHD), and we hypothesized that the protective effect would extend beyond HLA-matched donors. We report outcomes for all consecutively transplanted patients at Stanford University from December 2001 through May 2015 who received TLI-ATG conditioning and HCTs from 8 to 9 out of 10 HLA-mismatched unrelated donors (MMUDs, N = 72) compared with 10 out of 10 HLA-matched unrelated donors (MUDs, N = 193). The median age of the patients was 60 years with a median follow-up of 2 years, and there was a similar distribution of lymphoid and myeloid malignancies in both cohorts. There were no significant differences between MMUD and MUD cohorts in overall survival (46% vs 46% at 5 years, P = .86), disease-free survival (38% vs 28% at 5 years, P = .25), nonrelapse mortality (17% vs 12% at 2 years, P = .34), acute GVHD grades III-IV (6% vs 3% at day +100, P = .61), or chronic GVHD (39% vs 35% at 5 years, P = .49). There was a trend toward less relapse in the MMUD cohort (45% vs 60% at 5 years, hazard ratio: 0.71, P = .094), which was significant for patients with lymphoid malignancies (29% vs 57% at 5 years, hazard ratio: 0.55, P = .044). Achieving full donor chimerism was strongly associated with lower relapse rates. TLI-ATG conditioning may overcome the traditionally poorer outcome associated with HLA-mismatched donors and may be particularly well suited for patients with lymphoid malignancies who lack HLA-matched donors.

16.
Br J Haematol ; 144(6): 954-60, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19120354

ABSTRACT

High levels of fetal haemoglobin (HbF) are protective in beta-haemoglobinopathies. The proportion of erythrocytes containing HbF (F-cells, FC) was measured in healthy adults of African and Caucasian ancestry to assess the feasibility of localizing genes for the FC trait using admixture mapping. Participants were Afro-Caribbean (AC) blood donors and residents of a rural enclave with a history of recent German admixture (Afro-German, AG) recruited in Jamaica, and Caucasian Europeans recruited in Jamaica and the UK. FC levels were significantly different between groups (P < 0.001); the geometric mean FC level in the AC sample (n = 176) was 3.75% [95% confidence interval (CI) 3.36-4.18], AG sample (n = 631) was 2.77% (95% CI 2.63-2.92), and among Caucasians (n = 1099) was 3.26% (95% CI 3.13-3.39). After adjustment for age, sex, haemoglobin electrophoresis pattern, and HBG2 genotype, FC levels in the AC group remained significantly different (P < 0.001) from those in the Caucasian and the AG group but the difference between the Caucasian and AG groups became non-significant (P = 0.46) despite substantial differences in average ancestry. The data confirm ethnic differences in FC levels and indicate the potential usefulness of these populations for admixture mapping of genes for FC levels.


Subject(s)
Erythrocytes/chemistry , Fetal Hemoglobin/analysis , Racial Groups , Adult , Black People , Cell Count , Female , Fetal Hemoglobin/genetics , Flow Cytometry , Genotype , Humans , Jamaica , Linkage Disequilibrium , Male , Polymorphism, Restriction Fragment Length , United Kingdom , White People
17.
PLoS One ; 4(1): e4218, 2009.
Article in English | MEDLINE | ID: mdl-19148297

ABSTRACT

Fetal haemoglobin (HbF) is a major ameliorating factor in sickle cell disease. We investigated if a quantitative trait locus on chromosome 6q23 was significantly associated with HbF and F cell levels in individuals of African descent. Single nucleotide polymorphisms (SNPs) in a 24-kb intergenic region, 33-kb upstream of the HBS1L gene and 80-kb upstream of the MYB gene, were typed in 177 healthy Afro-Caribbean subjects (AC) of approximately 7% European admixture, 631 healthy Afro-Germans (AG, a group of African and German descendents located in rural Jamaica with about 20% European admixture), 87 West African and Afro-Caribbean individuals with sickle cell anaemia (HbSS), as well as 75 Northern Europeans, which served as a contrasting population. Association with a tag SNP for the locus was detected in all four groups (AC, P = 0.005, AG, P = 0.002, HbSS patients, P = 0.019, Europeans, P = 1.5 x 10(-7)). The association signal varied across the interval in the African-descended groups, while it is more uniform in Europeans. The 6q QTL for HbF traits is present in populations of African origin and is also acting in sickle cell anaemia patients. We have started to distinguish effects originating from European and African ancestral populations in our admixed study populations.


Subject(s)
Anemia, Sickle Cell/genetics , Black People/genetics , Chromosomes, Human, Pair 6 , Fetal Hemoglobin/analysis , Genetic Variation , Humans , Polymorphism, Single Nucleotide , White People
18.
Transfusion ; 49(5): 953-8, 2009 May.
Article in English | MEDLINE | ID: mdl-19175554

ABSTRACT

BACKGROUND: A serious constraint in the investigation of the human platelet antigen (HPA) status of potential neonatal alloimmune thrombocytopenia (NAIT) cases is the limited amount of DNA available from the neonates. Whole genome amplification (WGA) of these DNA samples could overcome this problem, but requires validation to ensure that it is sufficiently sensitive and accurate before its application in a clinical diagnostic setting. STUDY DESIGN AND METHODS: This study has validated the use of WGA DNA for HPA-1, -2, -3, -4, -5, and -15 genotyping with a panel of six controls and 13 previously HPA-typed samples from neonates together with parental DNA, using a 5'-nuclease (TaqMan) assay. WGA was performed using titrated amounts of genomic and WGA DNA template. HPA typing was performed on genomic and amplified DNA using a 5'-nuclease assay or polymerase chain reaction with sequence-specific primers (PCR-SSP). RESULTS: WGA DNA yields were in the suggested range of 400x to 800x, as assessed by spectrophotometry and gel analysis, and did not require further purification. HPA genotyping showed 100 percent concordance when using down to 5 ng of genomic or WGA template. CONCLUSION: This study demonstrates that WGA can be used for HPA typing using PCR-SSP or plate-based 5'-nuclease assays. The use of WGA for HPA typing in clinical samples from NAIT patients was validated with 100 percent concordance, and it is suggested that this technology can be used for other analyses where DNA amounts are limited.


Subject(s)
Antigens, Human Platelet/genetics , Nucleic Acid Amplification Techniques/standards , Thrombocytopenia, Neonatal Alloimmune/diagnosis , DNA Primers , Genome, Human , Genotype , Humans , Infant, Newborn , Nucleic Acid Amplification Techniques/methods , Reagent Kits, Diagnostic
19.
Transfusion ; 49(1): 57-63, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18954395

ABSTRACT

BACKGROUND: The outcome of clinical transplantation and a number of disease susceptibilities show very strong associations with genetic variants within the major histocompatibility complex, particularly in the human leukocyte antigen (HLA) genes. A problem with many association studies is the lack of sufficient DNA to perform multiple genetic analyses, particularly with transplantation outcomes where donor and recipient DNA are often in short supply. This study assesses whether a multiple-strand displacement whole genome amplification (WGA) method could generate sufficient template of high quality to perform unbiased amplification for analysis of the HLA-A, -B, -C, -DRB1, and -DQB1 genes. STUDY DESIGN AND METHODS: A panel of DNA samples from various biological sources was subjected to WGA reaction using Phi29 DNA polymerase. The HLA genotypes were subsequently determined using standard polymerase chain reaction (PCR)-based methods including sequence-specific oligonucleotide probes (PCR-SSOP, Luminex, Luminex Corp.) and sequence-based typing (PCR-SBT). WGA products and original DNA samples were used to determine the sensitivity of the Luminex assay; in addition, reamplified WGA products were also genotyped. RESULTS: The WGA templates, as well as serially amplified DNA for two successive rounds, yielded HLA genotypes fully concordant with those determined for the original DNA samples. WGA products and original DNA gave reproducible HLA-DQB1 genotypes with 100 to 10 ng of template. Purification of the WGA products was required for successful PCR-SBT, but not for the PCR-SSOP method. CONCLUSION: Our study suggests that WGA can be a reliable method for generating unlimited DNA for medium- or high-resolution HLA typing using the techniques described above.


Subject(s)
Genome, Human , Histocompatibility Testing/methods , Polymerase Chain Reaction/methods , Genotype , Humans , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...