Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Lancet Infect Dis ; 23(10): 1153-1163, 2023 10.
Article in English | MEDLINE | ID: mdl-37236221

ABSTRACT

BACKGROUND: Tafenoquine, co-administered with chloroquine, is approved for the radical cure (prevention of relapse) of Plasmodium vivax malaria. In areas of chloroquine resistance, artemisinin-based combination therapies are used to treat malaria. This study aimed to evaluate tafenoquine plus the artemisinin-based combination therapy dihydroartemisinin-piperaquine for the radical cure of P vivax malaria. METHODS: In this double-blind, double-dummy, parallel group study, glucose-6-phosphate dehydrogenase-normal Indonesian soldiers with microscopically confirmed P vivax malaria were randomly assigned by means of a computer-generated randomisation schedule (1:1:1) to dihydroartemisinin-piperaquine alone, dihydroartemisinin-piperaquine plus a masked single 300-mg dose of tafenoquine, or dihydroartemisinin-piperaquine plus 14 days of primaquine (15 mg). The primary endpoint was 6-month relapse-free efficacy following tafenoquine plus dihydroartemisinin-piperaquine versus dihydroartemisinin-piperaquine alone in all randomly assigned patients who received at least one dose of masked treatment and had microscopically confirmed P vivax at baseline (microbiological intention-to-treat population). Safety was a secondary outcome and the safety population comprised all patients who received at least one dose of masked medication. This study is registered with ClinicalTrials.gov, NCT02802501 and is completed. FINDINGS: Between April 8, 2018, and Feb 4, 2019, of 164 patients screened for eligibility, 150 were randomly assigned (50 per treatment group). 6-month Kaplan-Meier relapse-free efficacy (microbiological intention to treat) was 11% (95% CI 4-22) in patients treated with dihydroartemisinin-piperaquine alone versus 21% (11-34) in patients treated with tafenoquine plus dihydroartemisinin-piperaquine (hazard ratio 0·44; 95% CI [0·29-0·69]) and 52% (37-65) in the primaquine plus dihydroartemisinin-piperaquine group. Adverse events over the first 28 days were reported in 27 (54%) of 50 patients treated with dihydroartemisinin-piperaquine alone, 29 (58%) of 50 patients treated with tafenoquine plus dihydroartemisinin-piperaquine, and 22 (44%) of 50 patients treated with primaquine plus dihydroartemisinin-piperaquine. Serious adverse events were reported in one (2%) of 50, two (4%) of 50, and two (4%) of 50 of patients, respectively. INTERPRETATION: Although tafenoquine plus dihydroartemisinin-piperaquine was statistically superior to dihydroartemisinin-piperaquine alone for the radical cure of P vivax malaria, the benefit was not clinically meaningful. This contrasts with previous studies in which tafenoquine plus chloroquine was clinically superior to chloroquine alone for radical cure of P vivax malaria. FUNDING: ExxonMobil, Bill & Melinda Gates Foundation, Newcrest Mining, UK Government all through Medicines for Malaria Venture; and GSK. TRANSLATION: For the Indonesian translation of the abstract see Supplementary Materials section.


Subject(s)
Antimalarials , Artemisinins , Malaria, Vivax , Malaria , Quinolines , Humans , Malaria, Vivax/drug therapy , Malaria, Vivax/prevention & control , Primaquine/therapeutic use , Drug Therapy, Combination , Quinolines/therapeutic use , Artemisinins/adverse effects , Chloroquine/therapeutic use , Malaria/drug therapy , Plasmodium vivax
2.
Mol Biol Evol ; 39(3)2022 03 02.
Article in English | MEDLINE | ID: mdl-35294555

ABSTRACT

Island Southeast Asia (ISEA) and Oceania host one of the world's richest assemblages of human phenotypic, linguistic, and cultural diversity. Despite this, the region's male genetic lineages are globally among the last to remain unresolved. We compiled ∼9.7 Mb of Y chromosome (chrY) sequence from a diverse sample of over 380 men from this region, including 152 first reported here. The granularity of this data set allows us to fully resolve and date the regional chrY phylogeny. This new high-resolution tree confirms two main population bursts: multiple rapid diversifications following the region's initial settlement ∼50 kya, and extensive expansions <6 kya. Notably, ∼40-25 kya the deep rooting local lineages of C-M130, M-P256, and S-B254 show almost no further branching events in ISEA, New Guinea, and Australia, matching a similar pause in diversification seen in maternal mitochondrial DNA lineages. The main local lineages start diversifying ∼25 kya, at the time of the last glacial maximum. This improved chrY topology highlights localized events with important historical implications, including pre-Holocene contact between Mainland and ISEA, potential interactions between Australia and the Papuan world, and a sustained period of diversification following the flooding of the ancient Sunda and Sahul continents as the insular landscape observed today formed. The high-resolution phylogeny of the chrY presented here thus enables a detailed exploration of past isolation, interaction, and change in one of the world's least understood regions.


Subject(s)
Asian People , DNA, Mitochondrial , Asia, Southeastern , DNA, Mitochondrial/genetics , Humans , Male , Mitochondria/genetics , Phylogeny
3.
PLoS Genet ; 16(5): e1008749, 2020 05.
Article in English | MEDLINE | ID: mdl-32453742

ABSTRACT

Indonesia is the world's fourth most populous country, host to striking levels of human diversity, regional patterns of admixture, and varying degrees of introgression from both Neanderthals and Denisovans. However, it has been largely excluded from the human genomics sequencing boom of the last decade. To serve as a benchmark dataset of molecular phenotypes across the region, we generated genome-wide CpG methylation and gene expression measurements in over 100 individuals from three locations that capture the major genomic and geographical axes of diversity across the Indonesian archipelago. Investigating between- and within-island differences, we find up to 10.55% of tested genes are differentially expressed between the islands of Sumba and New Guinea. Variation in gene expression is closely associated with DNA methylation, with expression levels of 9.80% of genes correlating with nearby promoter CpG methylation, and many of these genes being differentially expressed between islands. Genes identified in our differential expression and methylation analyses are enriched in pathways involved in immunity, highlighting Indonesia's tropical role as a source of infectious disease diversity and the strong selective pressures these diseases have exerted on humans. Finally, we identify robust within-island variation in DNA methylation and gene expression, likely driven by fine-scale environmental differences across sampling sites. Together, these results strongly suggest complex relationships between DNA methylation, transcription, archaic hominin introgression and immunity, all jointly shaped by the environment. This has implications for the application of genomic medicine, both in critically understudied Indonesia and globally, and will allow a better understanding of the interacting roles of genomic and environmental factors shaping molecular and complex phenotypes.


Subject(s)
DNA Methylation , Ethnicity/genetics , Gene-Environment Interaction , Transcriptome , CpG Islands , Environment , Epigenesis, Genetic/physiology , Ethnicity/statistics & numerical data , Gene Expression Profiling/statistics & numerical data , Genetics, Population , Genome-Wide Association Study/statistics & numerical data , Genomics/methods , Humans , Indonesia/epidemiology , Islands/epidemiology , Pacific Islands/epidemiology , Pedigree , Phenotype , Polymorphism, Single Nucleotide , RNA-Seq
4.
JAMA Netw Open ; 1(4): e181449, 2018 08 03.
Article in English | MEDLINE | ID: mdl-30646129

ABSTRACT

Importance: Latent hepatic Plasmodium vivax hypnozoites provoke repeated clinical attacks called relapses. Only primaquine phosphate kills hypnozoites, and its therapeutic activity may depend on naturally polymorphic cytochrome P450 2D6 isotype (CYP2D6) activity. Objective: To examine the association of impaired CYP2D6 genotypes and CYP2D6 metabolic phenotypes with therapeutic failure of directly observed high-dose primaquine treatment for P vivax malaria relapse. Design, Setting, and Participants: Nested case-control study of patients who, in July 2014, completed a randomized clinical trial of directly observed primaquine treatment for radical cure of acute P vivax malaria in an area of Indonesia where reinfection during 1 year of posttreatment follow-up was improbable. A total of 177 of 180 patients with P vivax malaria completed the clinical trial of primaquine treatment to prevent relapse; 151 were eligible for recruitment as controls. After screening, 59 potential control individuals (no relapse) and 26 potential case patients (relapse) were considered, and 36 controls and 21 cases were enrolled. Exposures: Cases and controls were exposed to P vivax malaria and primaquine therapy but had variable exposure to the enzymatic activity of CYP2D6, classified as impaired by a genotype-determined qualitative phenotype (poor or intermediate), genotype-determined activity score less than 1.5, or a log of the 24-hour pooled urine dextromethorphan-dextrorphan metabolic ratio greater than -1.0. Main Outcomes and Measures: Unadjusted odds ratios (ORs) of relapse with impaired CYP2D6 metabolism determined by genotype or measured by urinary dextromethorphan-dextrorphan metabolic ratio. Results: Among the 21 cases (mean [SD] age, 30.5 [6.3] years; all male) and 36 controls (mean [SD] age, 29.0 [3.6] years; all male), 6 CYP2D6 alleles (*1, *2, *4, *5, *10, and *41) occurred as 12 distinct genotypes, with model activity scores ranging from 0.0 to 2.0. Among 32 patients with genotypic activity scores of 1.0 or less, 18 had experienced relapse, whereas among the 25 with scores higher than 1.0, 3 had experienced relapse (OR, 9.4; 95% CI, 2.1-57.0; P = .001). When the log of the metabolic ratio of dextromethorphan-dextrorphan was -1.0 or less, only 1 of 18 patients experienced relapse, whereas above that threshold (consistent with low metabolic activity), 20 of 39 patients experienced relapse (OR, 18; 95% CI, 2.2-148.0; P = .007). Conclusions and Relevance: Genotype-determined and directly measured impaired levels of CYP2D6 activity were associated with elevated risk of therapeutic failure. These findings suggest a natural variability in CYP2D6-dependent metabolism of primaquine as a key determinant of therapeutic efficacy against latent P vivax malaria.


Subject(s)
Antimalarials/pharmacology , Antimalarials/therapeutic use , Cytochrome P-450 CYP2D6/genetics , Genotype , Malaria, Vivax/drug therapy , Phenotype , Plasmodium vivax/drug effects , Plasmodium vivax/genetics , Primaquine/pharmacology , Primaquine/therapeutic use , Adult , Case-Control Studies , Female , Humans , Male , Middle Aged , Treatment Outcome , Young Adult
5.
Malar J ; 13: 488, 2014 Dec 12.
Article in English | MEDLINE | ID: mdl-25495607

ABSTRACT

BACKGROUND: Primaquine is the only drug available for preventing relapse following a primary attack by Plasmodium vivax malaria. This drug imposes several important problems: daily dosing over two weeks; toxicity in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency; partner blood schizontocides possibly impacting primaquine safety and efficacy; cytochrome P-450 abnormalities impairing metabolism and therapeutic activity; and some strains of parasite may be tolerant or resistant to primaquine. There are many possible causes of repeated relapses in a patient treated with primaquine. CASE DESCRIPTION: A 56-year-old Caucasian woman from New Zealand traveled to New Ireland, Papua New Guinea for two months in 2012. One month after returning home she stopped daily doxycycline prophylaxis against malaria, and one week later she became acutely ill and hospitalized with a diagnosis of Plasmodium vivax malaria. Over the ensuing year she suffered four more attacks of vivax malaria at approximately two-months intervals despite consuming primaquine daily for 14 days after each of those attacks, except the last. Genotype of the patient's cytochrome P-450 2D6 alleles (*5/*41) corresponded with an intermediate metabolizer phenotype of predicted low activity. DISCUSSION: Multiple relapses in patients taking primaquine as prescribed present a serious clinical problem, and understanding the basis of repeated therapeutic failure is a challenging technical problem. This case highlights these issues in a single traveler, but these problems will also arise as endemic nations approach elimination of malaria transmission.


Subject(s)
Antimalarials/therapeutic use , Malaria, Vivax/drug therapy , Malaria, Vivax/prevention & control , Primaquine/therapeutic use , Travel , Doxycycline/therapeutic use , Female , Humans , Middle Aged , New Zealand , Papua New Guinea , Recurrence , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...