Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ecology ; 98(12): 3044-3055, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28881008

ABSTRACT

Studies of trophic-level material and energy transfers are central to ecology. The use of isotopic tracers has now made it possible to measure trophic transfer efficiencies of important nutrients and to better understand how these materials move through food webs. We analyzed data from thirteen 15 N-ammonium tracer addition experiments to quantify N transfer from basal resources to animals in headwater streams with varying physical, chemical, and biological features. N transfer efficiencies from primary uptake compartments (PUCs; heterotrophic microorganisms and primary producers) to primary consumers was lower (mean 11.5%, range <1% to 43%) than N transfer efficiencies from primary consumers to predators (mean 80%, range 5% to >100%). Total N transferred (as a rate) was greater in streams with open compared to closed canopies and overall N transfer efficiency generally followed a similar pattern, although was not statistically significant. We used principal component analysis to condense a suite of site characteristics into two environmental components. Total N uptake rates among trophic levels were best predicted by the component that was correlated with latitude, DIN:SRP, GPP:ER, and percent canopy cover. N transfer efficiency did not respond consistently to environmental variables. Our results suggest that canopy cover influences N movement through stream food webs because light availability and primary production facilitate N transfer to higher trophic levels.


Subject(s)
Food Chain , Nitrogen Cycle , Nitrogen/analysis , Rivers/chemistry , Animals , Nitrogen/metabolism , Nitrogen Isotopes
2.
Proc Natl Acad Sci U S A ; 108(1): 214-9, 2011 Jan 04.
Article in English | MEDLINE | ID: mdl-21173258

ABSTRACT

Nitrous oxide (N(2)O) is a potent greenhouse gas that contributes to climate change and stratospheric ozone destruction. Anthropogenic nitrogen (N) loading to river networks is a potentially important source of N(2)O via microbial denitrification that converts N to N(2)O and dinitrogen (N(2)). The fraction of denitrified N that escapes as N(2)O rather than N(2) (i.e., the N(2)O yield) is an important determinant of how much N(2)O is produced by river networks, but little is known about the N(2)O yield in flowing waters. Here, we present the results of whole-stream (15)N-tracer additions conducted in 72 headwater streams draining multiple land-use types across the United States. We found that stream denitrification produces N(2)O at rates that increase with stream water nitrate (NO(3)(-)) concentrations, but that <1% of denitrified N is converted to N(2)O. Unlike some previous studies, we found no relationship between the N(2)O yield and stream water NO(3)(-). We suggest that increased stream NO(3)(-) loading stimulates denitrification and concomitant N(2)O production, but does not increase the N(2)O yield. In our study, most streams were sources of N(2)O to the atmosphere and the highest emission rates were observed in streams draining urban basins. Using a global river network model, we estimate that microbial N transformations (e.g., denitrification and nitrification) convert at least 0.68 Tg·y(-1) of anthropogenic N inputs to N(2)O in river networks, equivalent to 10% of the global anthropogenic N(2)O emission rate. This estimate of stream and river N(2)O emissions is three times greater than estimated by the Intergovernmental Panel on Climate Change.


Subject(s)
Denitrification/physiology , Environmental Monitoring/statistics & numerical data , Greenhouse Effect , Nitrous Oxide/metabolism , Rivers/chemistry , Environmental Monitoring/methods , Mass Spectrometry , Models, Theoretical , Nitrogen Isotopes/analysis , United States
3.
Ecol Appl ; 19(5): 1135-46, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19688922

ABSTRACT

Dynamics of nutrient exchange between floodplains and rivers have been altered by changes in flow management and proliferation of nonnative plants. We tested the hypothesis that the nonnative, actinorhizal tree, Russian olive (Elaeagnus angustifolia), alters dynamics of leaf litter decomposition compared to native cottonwood (Populus deltoides ssp. wislizeni) along the Rio Grande, a river with a modified flow regime, in central New Mexico (U.S.A.). Leaf litter was placed in the river channel and the surface and subsurface horizons of forest soil at seven riparian sites that differed in their hydrologic connection to the river. All sites had a cottonwood canopy with a Russian olive-dominated understory. Mass loss rates, nutrient content, fungal biomass, extracellular enzyme activities (EEA), and macroinvertebrate colonization were followed for three months in the river and one year in forests. Initial nitrogen (N) content of Russian olive litter (2.2%) was more than four times that of cottonwood (0.5%). Mass loss rates (k; in units of d(-1)) were greatest in the river (Russian olive, k = 0.0249; cottonwood, k = 0.0226), intermediate in subsurface soil (Russian olive, k = 0.0072; cottonwood, k = 0.0031), and slowest on the soil surface (Russian olive, k = 0.0034; cottonwood, k = 0.0012) in a ratio of about 10:2:1. Rates of mass loss in the river were indistinguishable between species and proportional to macroinvertebrate colonization. In the riparian forest, Russian olive decayed significantly faster than cottonwood in both soil horizons. Terrestrial decomposition rates were related positively to EEA, fungal biomass, and litter N, whereas differences among floodplain sites were related to hydrologic connectivity with the river. Because nutrient exchanges between riparian forests and the river have been constrained by flow management, Russian olive litter represents a significant annual input of N to riparian forests, which now retain a large portion of slowly decomposing cottonwood litter with a high potential for N immobilization. As a result, retention and mineralization of litter N within these forests is controlled by hydrologic connectivity to the river, which affects litter export and in situ decomposition.


Subject(s)
Ecosystem , Elaeagnaceae , Populus , Nitrogen/analysis , Plant Leaves , Rivers/chemistry , Rivers/microbiology
4.
Nature ; 452(7184): 202-5, 2008 Mar 13.
Article in English | MEDLINE | ID: mdl-18337819

ABSTRACT

Anthropogenic addition of bioavailable nitrogen to the biosphere is increasing and terrestrial ecosystems are becoming increasingly nitrogen-saturated, causing more bioavailable nitrogen to enter groundwater and surface waters. Large-scale nitrogen budgets show that an average of about 20-25 per cent of the nitrogen added to the biosphere is exported from rivers to the ocean or inland basins, indicating that substantial sinks for nitrogen must exist in the landscape. Streams and rivers may themselves be important sinks for bioavailable nitrogen owing to their hydrological connections with terrestrial systems, high rates of biological activity, and streambed sediment environments that favour microbial denitrification. Here we present data from nitrogen stable isotope tracer experiments across 72 streams and 8 regions representing several biomes. We show that total biotic uptake and denitrification of nitrate increase with stream nitrate concentration, but that the efficiency of biotic uptake and denitrification declines as concentration increases, reducing the proportion of in-stream nitrate that is removed from transport. Our data suggest that the total uptake of nitrate is related to ecosystem photosynthesis and that denitrification is related to ecosystem respiration. In addition, we use a stream network model to demonstrate that excess nitrate in streams elicits a disproportionate increase in the fraction of nitrate that is exported to receiving waters and reduces the relative role of small versus large streams as nitrate sinks.


Subject(s)
Ecosystem , Human Activities , Nitrates/analysis , Nitrates/metabolism , Nitrites/analysis , Nitrites/metabolism , Rivers/chemistry , Agriculture , Bacteria/metabolism , Computer Simulation , Geography , Nitrogen/analysis , Nitrogen/metabolism , Nitrogen Isotopes , Plants/metabolism , Urbanization
5.
Microb Ecol ; 51(1): 90-8, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16389463

ABSTRACT

Nitrogen (N) enrichment of the biosphere is an expanding problem to which arid ecosystems may be particularly sensitive. In semiarid grasslands, scarce precipitation uncouples plant and microbial activities, and creates within the soil a spatial mosaic of rhizosphere and cyanobacterial crust communities. We investigated the impact of elevated N deposition on these soil microbial communities at a grama-dominated study site located incentral New Mexico (USA). The study plots were established in 1995 and receive 10 kg ha(-1) year(-1) of supplemental N in the form of NH(4)NO(3). Soil samples were collected in July 2004, following 2 years of severe drought, and again in March 2005 following a winter of record high precipitation. Soils were assayed for potential activities of 20 extracellular enzymes and N(2)O production. The rhizosphere and crust-associated soils had peptidase and peroxidase potentials that were extreme in relation to those of temperate soils. N addition enhanced glycosidase and phosphatase activities and depressed peptidase. In contrast to temperate forest soils, oxidative enzyme activity did not respond to N treatment. Across sampling dates, extracellular enzyme activity responses correlated with inorganic N concentrations. N(2)O generation did not vary significantly with soil cover or N treatment. Microbial responses to N deposition in this semiarid grassland were distinct from those of forest ecosystems and appear to be modulated by inorganic N accumulation, which is linked to precipitation patterns.


Subject(s)
Nitrogen/metabolism , Soil Microbiology , Soil/analysis , Carbon/analysis , Climate , Ecology , Enzymes/analysis , Leucyl Aminopeptidase/analysis , Nitrogen/analysis , Nitrous Oxide/analysis , Nitrous Oxide/metabolism , Peroxidase/analysis , Poaceae/microbiology , Principal Component Analysis , Trees/enzymology , beta-Glucosidase/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...